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Abstract

I explore how a revenue-maximizing principal allocating a single good should op-
timally design his auction in the presence of collusion. The principal evaluates mech-
anisms according to the worst-case revenue that could arise from collusive or non-
collusive play. The principal’s optimal mechanism in the face of collusion is to post a
price and run an efficient knockout auction in-house. This remains the optimal mecha-
nism when the principal additionally hypothesizes that colluders are maximizing their
joint surplus; with surplus-maximizing colluders, posting a price without running the

knockout in-house is also an optimal mechanism.

1 Introduction

Many instances of auctions are part of long-run interactions between the bidders. Dynamic
incentives may sustain complicated arrangements between the bidders, so bidders may not
necessarily play auctions in the non-cooperative manner captured by a Bayes-Nash equilib-
rium. Instead, they may choose to collude. Collusion threatens the revenue promised by
optimal auctions. Consider, for example, first-price or second-price auctions with reserve
prices, which are optimal mechanisms when bidders’ valuations are drawn independently
from the same regular distribution. In contrast to a posted price, these auction formats
incentivize bidders with high valuations to bid high to prevent others from getting the good
and secure it for themselves instead. Collusion allows bidders to coordinate on entering low

bids and suppresses competition for the good.
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To what extent collusion can undermine the principal’s revenue was first explored in
McAfee and McMillan (1992) and Graham and Marshall (1987). Both study how surplus-
maximizing colluders should organize themselves to play particular auction formats. McAfee
and McMillan (MM) consider collusion against a first-price auction with a reserve price,
while Graham and Marshall (GM) study the second-price auction with a reserve price. In
both papers, surplus-maximizing colluders allocate the good efficiently amongst themselves
through a pre-auction knockout, which determines who gets the right to buy the good at
the reserve price. Both MM and GM restrict the principal to setting a first-price auction
or a second-price auction, respectively, so the principal can only respond to collusion by
adjusting the reserve price of his auction format. Since colluders pay exactly the reserve
price whenever their highest realized valuation exceeds it, the principal optimally chooses a
reserve price equal to the optimal posted price given a single bidder whose valuation matches
the colluders’ highest realized valuation.

In this paper, the principal can freely choose the auction format rather than being con-
strained to adjusting the reserve price in a first-price or second-price auction. Additionally,
the principal operates under weaker informational assumptions about what colluders can
achieve. For example, the principal is sure that if collusion occurs, it is preferred to non-
collusive play, and potential colluders must contend with the same informational frictions
that affect non-collusive play, but beyond these constraints, the principal does not take a
stand on the arrangements that colluders can form. In contrast to MM and GM, surplus-
maximizing collusive arrangements here are not assumed to be feasible. As the principal
does not fully understand the colluders’ capabilities, he evaluates mechanisms based on their
worst-case revenue, considering both non-collusive and collusive scenarios.

While the principal has the flexibility to design a complex mechanism, Theorem 1 estab-
lishes that the optimal mechanism is simple. The principal sets the posted price that would
be optimal if he were facing a single bidder with a valuation equal to the maximum realized
valuation of the colluders, and he runs a pre-auction knockout in-house to determine who
gets the right to buy the good. In other words, when the principal can contemplate more
complicated auction formats, the equilibrium outcome identified by GM and MM-—assuming
surplus-maximizing colluders and a constrained principal—remains globally optimal for the
principal to induce.

The principal’s ultimate goal is to maximize revenue, but it turns out that maximizing
bidder surplus is an important instrumental goal. The principal’s mechanism influences
collusion in two crucial ways: (1) it determines what arrangements colluders can execute,
and (2) it influences what arrangements colluders want to execute. At a high level, (1)

is governed by the minimum prices bidders must collectively pay to acquire the good at



different probabilities, while (2) is determined by the joint surplus generated through non-
collusive play. Intuitively, if the non-collusive joint surplus is low, bidders find more collusive
schemes to be attractive, alternative ways to play the mechanism, and they are more likely
to collude. As long as the influence of the principal’s mechanism through (1) remains largely
unchanged, maximizing the surplus from non-collusive play is a valuable secondary objective.
This secondary motive drives the principal to allocate the good efficiently whenever he sells
it and fixes some features of the optimal mechanism’s transfer rule.

After identifying the mechanism that maximizes non-collusive surplus while holding fixed
(1), the principal optimizes over various minimum price schedules, considering only mecha-
nisms that solve the surplus-maximization subproblem. The principal’s outer problem over
price schedules is equivalent to a single-bidder screening problem with a standard revenue-
maximizing principal. Given Myerson (1981), the posted price emerges as part of the optimal
mechanism.

When colluders can implement arrangements that maximize their joint surplus, the mech-
anism stated in Theorem 1 remains optimal, but now, the principal can also achieve the
optimum by simply posting a price (Theorem 2). Since bidders are assumed to collude effi-
ciently, the principal is indifferent between doing the knockout auction in-house and allowing
colluders to carry it out on their own.

The principal’s minimal model of collusion and worst-case evaluation of mechanisms
can be interpreted as arising from uncertainty about the unmodeled, possibly unknown
frictions colluders face. For example, it is well-documented that real collusive arrangements
are sustained by attempts at monitoring. Colluders report their actions to establish their
compliance with the collusive agreement. The frequency of these attempts varies across
cartels, ranging from a couple of times a year to weekly as discussed in Harrington Jr (2006).
For whatever reason (unknown to the principal and so outside the model), a cartel may be
unable to sustain very frequent monitoring, and this may prevent them from implementing
certain collusive arrangements. The principal may not have a full understanding of bidders’
abilities to monitor each other and so may not know exactly what arrangements are feasible
for colluders.

Similarly, colluding often entails some risk of detection and possible punishment by a
regulator. Collusion, if it happens, must be profitable enough to outweigh this expected
cost. The principal may not be able to accurately estimate this cost since detection, suc-
cessful conviction, and the extent of fines ultimately depend on the details of how colluders
interact and how much evidence they generate of their coordination. The principal may be
unwilling to consider a detailed model of collusion due to limited knowledge about the exact

technologies that enable coordination. Given these uncertainties about the other frictions



that impede collusion, the principal chooses to focus on the revenue he can guarantee and
evaluates mechanisms according to their worst-case revenue under non-collusive or collusive
play.

This paper demonstrates how the principal can optimally respond to collusive threats by
deliberately leaving surplus on the table. It is shown that the best way to achieve this is to

ensure efficient allocation and commit to a single posted price.

1.1 Related Literature

In addition to McAfee and McMillan (1992) and Graham and Marshall (198), there is an
existing literature on optimal auction design in the presence of collusion. This strand of the
literature was initiated by Laffont and Martimort (1997) and Laffont and Martimort (2000).
In these models, collusion is required to satisfy an interim revealed preference constraint, i.e.,
a necessary condition for collusion is that bidders prefer their interim payoff while colluding
to their interim payoff while playing non-collusively. Because collusive arrangements form
at the interim stage, the principal can focus without loss of optimality on “collusion-proot”
mechanisms, mechanisms which are interim Pareto efficient and so leave no scope for collusion
since any collusive arrangement will necessarily make some type of some bidder worse off.

Following Laffont and Martimort, Che and Kim (2006) study the issue of collusion-proof
auction design in a very general setting and conclude that any payoff from a BNE can be
implemented in a collusion-proof way. In short, the principal can totally insulate himself
from collusion by manipulating the ex post transfers to deliver a constant payoff at every
action profile. This powerful positive conclusion was softened by later work Che and Kim
(2009) and Pavlov (2008), which note that in Che and Kim’s construction of a collusion-
proof mechanism, there was no opt-out action. Che and Kim (2009) and Pavlov (2008)
study collusion-proof auction design but with the requirement of an opt-out action. I also
adopt this requirement that the principal include an opt-out action for each player. Che and
Kim (2009) and Pavlov (2008) show that under certain assumptions, the principal can still
achieve his optimal payoff assuming no collusion, even in the presence of collusion.

In contrast to these papers, I consider a setting where bidders are playing many instances
of the same auction over time, and the collusive arrangement is not formed anew with every
instance of the auction. Collusion occurs if the bidders’ collusive payoffs averaged over time
exceed their non-collusive payoffs averaged over time, so bidders’ preferences for colluding
over not colluding are evaluated at the ex ante stage. I do not include a regulator to which
the principal can report possible collusion, and the principal cannot vary his auction format

in response to observations of bidder play. The current exercise is informative as a measure



of what can be done when the principal simply sets an auction format, or as a strategy when
the detection of collusion and dynamically changing the auction format may be prohibitively
costly.

Ultimately, this paper provides a main result that is less positive than those of Che and
Kim (2006), Che and Kim (2009), and Pavlov (2008). In my setting, the principal is unable
to achieve his optimal payoff assuming no collusion. To cope with the presence of collusion,
he is driven to compromise the allocation he would choose assuming no collusion. While the
principal would not necessarily allocate the good efficiently in the optimal auction studied
in Myerson (1981), facing collusion, the principal’s optimal mechanism efficiently allocates

the good whenever it is sold.

2 Model

N bidders participate in a single good auction designed by the principal. Each bidder has
a valuation for the good v;, which is drawn from an atomless distribution F;[0,1] with full
support and density f;. Valuations are drawn independently and are each bidder’s private
information. I use V to refer to the space of all profiles of valuations, [0, 1]V.

The principal designs an auction by specifying a space of actions for each bidder A;, a
mapping from action profiles to probabilities of allocating the good to each bidder ¢ : A —
0,1]" where Y, ¢i(a) < 1 for each a, and mappings from action profiles to transfers paid by
each bidder t; : A — R. Participation in the principal’s auction is voluntary, so the auction
must contain an opt-out action for each bidder that guarantees the bidder gets the good
with 0 probability and pays nothing. Bidders have standard quasilinear utility, so playing
action profile a results in payoff ¢;(a)v; — t;(a) for bidder i with valuation v;.

The principal entertains two possible models for how bidders behave. On one hand,
bidders may be playing non-collusively. This is modeled as playing the principal’s preferred
Bayes-Nash equilibrium of the auction. On the other hand, bidders may be playing collu-
sively, which encompasses a rich set of behaviors. While colluding, bidders may coordinate
their actions, reallocate the good between themselves, or exchange side payments. [ model
collusion as a (direct) side mechanism that bidders design to play the principal’s mechanism.

The side mechanism consists of:

e a bid coordination scheme p : V' — AA, which specifies how the collusive arrangement

will play the principal’s original mechanism given a profile of bidders’ valuations,

e an allocation rule ¢ : V' — [0,1]" with _, ¢:(v) < 1, which associates each profile of
valuations with a probability bidder 7 ultimately gets the good,



e a transfer rule ¢ : V — R, which associates a profile of bidders’ valuations with the
transfer a particular bidder ¢ must make to the collusive arrangement in excess of her

payments to the principal.

The principal is agnostic about the exact nature of this side mechanism, but he knows

that a few key frictions constrain it:

1. Feastbility. The side mechanism can only allocate the good with at most the proba-

bility that colluders acquire the good:

Do) < D73 plalv)a(a) W (Feas)

acA i

2. Private information between bidders. The same informational frictions exist
when bidders collude as when they play non-collusively, so the side mechanism must

incentivize truthful revelation of each bidder’s private information:

E,_,[q:(v)vi = ti(v) — Zp(d!v)t a

> Ev,l[q (/Uza (o z)vi Ul, z Z P G‘UZ, z d)] v/Ui? {}272 (C_IC)

3. Rewvealed preference. Bidders only collude if they benefit from colluding over playing

the mechanism non-collusively:
where U] is the expected payoff of the bidder i under the non-collusive equilibrium

chosen by the principal.

4. No long-term deficit. Collusion is not subsidized by outside sources, so expected

payments between bidders must be equal to 0.

B[S (o) = 0 (EABB)

The principal evaluates the auction according to its worst-case revenue across all conjec-
tured models of play. Note that bidders playing the principal’s non-collusive BNE is always

feasible as a “collusive” scheme. Formally, the principal calculates for each mechanism



(A, q,1):

R(4,q.t) =il E, D plalo) Y ti(a)]

acA 7

s.t. Feas, C-IC, EAIR, EABB

Because the principal evaluates his mechanisms according to the worst-case revenue, a stan-
dard revelation principle argument goes through. By discarding actions that are not played
in his preferred BNE (and are not the opt-out actions), the principal weakly increases the
worst-case payoff since the set of action profiles available to colluders shrinks. As a result,
it is without loss for the principal’s mechanism to be a direct mechanism with additional
actions {aP**"'}; such that q;(ai”"*"",a_;) = 0 and t;(a{"*"",a_;) = 0. From here, I take
A; = Vi Ua?" to be the set of actions available to bidder i in the principal’s mechanism.
The principal’s preferred BNE corresponds to truth-telling.

The principal’s problem is

max R.(q,t) (P)

¢ A—[0,1]N t: ASRN

E, ,[gi(v)v; — t;(v)] > Ey_,[qi(0;, v_3)v; — t;(05,v_5)] V05,04, 0
0

E,_[gi(v)v; —ti(v)] >0 Voy,i
qi(afpm”t, a;)=0 Via_
ti(afpm“t, a;)=0 Via_

3 Optimal Mechanism

3.1 Main Result

In this section, I define the optimal mechanism and discuss its interpretation. Let p be the

optimal posted price, so p solves

1 —TT 6
max p( H ()



The optimal mechanism has the following allocation function:

1 if vy, =max;jv; >p
k i i Vi =

g (v) = ,
0 otherwise

where the good goes to the bidder with the highest realized valuation as long as it is above

p.
The optimal transfer function collects exactly p in total revenue whenever the good is
sold:

" p if max;v; > p
> () = (1)

0 otherwise

To give the full specification of the transfer function, it is necessary to first specify the surplus
given to each bidder’s lowest type. Using incentive compatibility and integration by parts,
we can check that the sum of the surpluses given to each bidder’s lowest type, >, U;(0), is

weakly positive:
Z U (0) Z pka v; — thka ZE’UZ / pk;a ()dd]
- Z E,, [[{v: > p} / (vi = p)d [ [ F5(®)] = 0

J#i

As a result, it is possible to divide this surplus among the lowest types so that U;(0) > 0 for
each 1.
In order to satisfy incentive compatibility, the principal’s optimal transfer function must

yield the following interim transfers while also satisfying 1:
7o) = (o)~ U0) - [ P
0

To accomplish this, define constants x; for each 7 as follows:

Ey, [t (vi)]
Pr(maxv > p)p

i =

K; is the proportion of the expected cost paid by bidder 7, so >, k; = 1.



We can now construct the principal’s optimal transfer function:

" (v) = kpl{maxv > p} + & (v;) — ,E,_, [pl{maxv > p}|

S

This direct mechanism (g%, tP%?) satisfies IR, so we can meet the requirement of a safe
opt-out action for each bidder by adding actions {a?***'}; without affecting the truth-telling
BNE. We set qfka(afptom,a_i) = 0 and t?ka(afpt‘mt,a_i) = 0 for all j and i to complete the
description of the mechanism. Abusing notation, we refer to the mechanism with the opt-out

actions also as (qP*?, tPke).
Theorem 1. The principal’s optimal mechanism is (gP*, tP%?).

The principal’s optimal mechanism collects p in total revenue whenever the good is sold,
much like a standard posted price. Unlike the standard posted price, it also manages to
allocate the good to the bidder with the highest realized valuation whenever it is above
p.l' To allocate the good efficiently while also capping the total ex post revenue collected
at p, the principal uses ex post budget-balanced side payments between the bidders in the
mechanism. These side payments can be interpreted as the payments that would implement
an efficient pre-auction knockout to determine which bidder gets the right to buy the good
at the price p.

3.2 Proof Sketch

In this subsection, I discuss how to show that (¢P*¢,tP*¢) is optimal. The proof proceeds in

four steps, of which I give an overview here. The appendix A contains the details.

3.2.1 Consolidation of EAIR Constraints

First, bidders” EAIR constraints can be combined into a single constraint. Fix an arbitrary

mechanism (g, t) that may be set by the principal. Since each bidder’s expected surplus from

'In general, there is no equilibrium possible with a posted price p that will allocate the good efficiently
whenever the maximum realized valuation exceeds p. For this discussion, a posted price p defines a game
where only the winner of the good pays, and he pays exactly p. These features constrain the interim transfers
possible in any BNE of a posted price, so bidder ¢ with valuation v; will pay Prob(v; gets the good)p in
expectation. If Prob(v; gets the good) = Prob(v; > v,;Vj # i) whenever v; > p, then the envelope theorem
payoff formula constrains the interim allocation function, and it is possible to find examples of distributions
where the resulting interim allocation is not consistent with efficient allocation of the good. F; = UJ[0,1]
for all 7 is a simple example. See section 4.2 for further discussion of the mechanism with interim transfer
function Prob(v; > v,;Vj # ¢)I{v; > v;} for some threshold v,.



collusion must exceed their surplus from playing the truth-telling BNE, the joint surplus of

all bidders colluding must exceed the joint non-collusive surplus:
D R fd@(0) — L) = Y p(do)t(d)] = Y U (Joint EAIR)

With ex ante budget-balanced transfers, this is also sufficient for EAIR:

Lemma 1. Colluders’ problem is equivalent to

;rgfp]Ev [Z p(0|v) Z ti(0)]

s.t. Feas, FABB, Joint EAIR, C-IC

3.2.2 Decomposition into BNE Surplus and Cost Function

Next, we can break down the effect of the principal’s mechanism into two distinct channels:
(1) how it limits the aggregate outcomes that colluders can achieve, and (2) how it shapes
bidders’ incentives to collude over playing non-collusively. I formalize these ideas in this
subsection.

While each action profile of the principal’s mechanism specifies the assignment of the good
to particular bidders with some probabilities and extracts transfers from individual bidders,
these details of an action’s outcome can be undermined because colluders can reallocate the
good and make payments between each other. For each action profile a in the principal’s
mechanism, define (>, ¢;(a),>_,ti(a)) to be the aggregate outcome associated with a. As a
first step, define

Al = {(Z gi(a), Zti(a)) ca €V},

which is the set of aggregate outcomes that can be achieved by playing a single action profile
in (g, t) with probability 1. Since colluders can randomize between action profiles, anything
in the convex hull of A" can be induced as an aggregate outcome. Furthermore, colluders
can throw away the good, so any aggregate outcome in the following set can be achieved by

the cartel:
Py =1{(@Q,T): EI(Q,T) € com;(A(q’t)) st. Q < Q,T = T,Q >0}

P41y captures the first channel described at the start of this subsection. The second channel

is captured by the joint surplus generated by the truth-telling BNE of a mechanism.
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Lemma 2. Fiz two mechanisms (q,t) and (q,
associated with the truth-telling BNE under (q
S, U, then R.(q,t) < R.(q,1).

£). Let ,UM (32,UP) be the joint surplus
) ((¢,1)). If Puyy = Pyyp and Y, U <

The lemma implies that if Py = Pz and Y, Ul =3, U, then R.(q,t) = R.(¢,1). In
this way, P, and ), U contain all the information about (g,¢) needed to pin down the
worst-case revenue that could arise. We could think of the principal’s problem as equivalent
to picking the optimal pair of P4 and >, U

Working with the space of feasible aggregate outcomes, P, ), is cumbersome. Instead,
define f to be the lower convex envelope weakly below cl( P, ) with domain [0, sup, >, ¢i(v)].
For the rest of the analysis, I work with f instead of P ;. I call f the cost function induced
by (q,t). This object was first defined and studied in Pavlov (2008) and Che and Kim (2009).
For any probability @, f(Q) is the infimal total cost that colluders must pay to get the good
with probability (). f has some important properties, some of which are typical of cost

functions:

Lemma 3. f is (1) continuous on [0,q), (2) convez, and (3) increasing. Additionally, (4)
f(0) <0.

I refer to any function f : [0,G] — R such that g € [0, 1] and f satisfies the properties of
Lemma 3 as a cost function.

Figure 1 shows the space of feasible aggregate outcomes for a first-price auction with a
“strict” reserve price of 0.5. This auction allocates the good to the bidder with the highest
bid as long as that bid is strictly above 0.5. Otherwise, no bidder gets the good. P, is the
shaded blue region in the figure. It is bounded below by the function f(Q) = 0.5Q) but does
not include it. Colluders cannot exactly achieve all points on the cost function, but these
points can be approximated arbitrarily closely.

Within the set of mechanisms that induce the same cost function, the principal weakly

prefers those that result in strictly higher BNE surplus:

Lemma 4. Fiz mechanisms (¢,t) and (4, 1) with associated BNE surpluses 3., Ul and 3., U?
respectively. Suppose (q,t) and (4,t) induce the same cost function f with domain [0,q]. If
S, U > S UP, then Re(q,t) > Re(d, 7).

3.2.3 Inner Problem: Surplus Maximization

The principal’s problem can be split into an inner and an outer problem. The inner problem
finds the (direct) mechanism that maximizes BNE surplus among the set of mechanisms

that induce a cost function weakly above an exogenously given, continuous cost function

11
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Figure 1: Feasible aggregate outcomes for FPA with a strict reserve price of 0.5 are repre-
sented by the blue region. The lower boundary of the set f(Q) = 0.5Q) is the cost function
and is not included.

f:10,q] — R. It turns out that the optimal mechanism results in a weakly higher worst-
case revenue than any mechanism that induces f as its cost function, where f equals f
except possibly at . As a result, it is without loss of optimality for the principal to restrict
attention to mechanisms that solve the inner problem for a continuous cost function f. The
principal then optimizes over cost functions to find the globally optimal mechanism.

To formulate the principal’s inner problem, fix a continuous cost function f : [0, 7] — R.
Consider the following problem where the feasible (direct) mechanisms induce cost functions

weakly above f:

max E, [Z ¢i(v)v; — ti(v)] (f-Surplus Max)

¢:V—[0,1]N t:V =R

f-Surplus Max can be solved by considering the relaxed problem without IC and IR

12



constraints:

max E, [Z ¢i(v)v; — t;(v)] (Relax fSM)

@V —[0,1]N VR

This relaxed problem can be solved pointwise. The resulting optimal allocation function
q* only allocates the good to the bidder with the highest realized valuation at each v. It
acquires the good with a total probability ) . ¢’ (v) that depends only on the highest realized
valuation. As long as a transfer function ¢ makes the second constraint bind for all v so that
Yoiti(v) = f(O2, ¢ (v)), (¢*,t) solves the relaxed problem.

It turns out that a particular ex post transfer function ¢* makes (¢*,¢*) an IC, IR mech-

anism:

Proposition 1. Fiz a continuous cost function f : [0,q] — R. There exists t* such that
(q*,t*) solves f-Surplus Mazx and Relax fSM.

Because the direct mechanism (¢*,¢*) satisfies IR, it is possible to modify it into a mech-
anism with safe opt-out actions without affecting the BNE. As discussed following Theorem
1, setting q;(a"*", a_;) = 0 and t;(a"**"", a_;) = 0 for all bidders 7, j completes the descrip-
tion of the mechanism. Since the truth-telling equilibrium satisfies IR, playing the opt-out
action is not a profitable deviation for any type of any agent. From here, I abuse notation
and use (¢*,t*) to also denote the mechanism that combines (¢*, t*) with opt-out actions and
the outcomes defined above.

When the principal sets (¢*, t*) that solves f-Surplus Max for a continuous cost function

f, the worst-case revenue is the revenue from the truth-telling BNE:

Proposition 2. Suppose (¢*,t*) solves f-Surplus Max for a continuous cost function f.
Then, the value of the colluders’ problem facing (¢*,t*) is E,[f(D_, qf (v))].

Given a mechanism (g, t) that induces a cost function f [0,q] — R, it is possible to
find a continuous cost function f that equals f everywhere except possibly at g. Given a
continuous cost function f, f-Surplus Max is well-defined. The next proposition states that
the mechanism (¢*, t*) that solves f-Surplus Max results is weakly greater worst-case revenue
than (q,t):

13



Proposition 3. Suppose (q,t) induces cost function f Define f:[0,q] — R so that

(@) if Q €10,9)

Q) =4" A , ]
limg_a f(Q) ifQ=q

Let (q*,t*) solve f-Surplus Max for cost function f. R.(q,t) < R.(q*,t*).

In other words, the principal can improve upon any mechanism (gq,t) that results in a
cost function f by setting the mechanism (¢*,¢*) that solves f-Surplus Max for the related
continuous cost function f. Restricting attention to mechanisms that solve f-Surplus Max

for a continuous cost function f is without loss of optimality for the principal.

3.2.4 Outer Problem: Optimization over Cost Functions

Given that the principal optimally sets a mechanism that solves f-Surplus Max for a con-

tinuous cost function f, the principal’s outer problem consists of choosing the optimal such

f:

Gel0,1],£:[0,g] =R

max E, [f(z q (v))] (P Outer Problem)

st. f(0)<0
(q*,t*) solves f-Surplus Max

f is a continuous cost function

Recall that the (¢*,t*) requires the principal to allocate the good to the bidder with the
highest realized valuation whenever the good is acquired. Thus, the principal’s outer problem
is effectively setting a menu of options to allocate the good to a single bidder with valuation
equal to max; v;, distributed according to [ [, /;. The menu must be continuous, convex, and
increasing, and it must contain the option that the bidder can walk away and receive — f(0) >
0 in payment. The bidder picks optimally from the menu given his private information,
max; v;. This problem can be relaxed and reformulated as a standard single-bidder screening
problem. From Myerson (1981), we know this has a simple solution: posting a price.
Let p be the optimal posted price so that p solves
;ne[g}f]p(l - IZIFj(p))
One (complicated) way to implement the posted price is to offer the menu {(Q,pQ)}gcio.11-

In the terminology of the original framing of P Outer Problem, this corresponds to setting a

14



cost function f*(Q) = p@ with domain [0, 1]. This cost function is continuous, convex, and
increasing with f(0) = 0, so it is feasible for P Outer Problem and thus solves it. With that,

Theorem 1 follows.

4 Extensions

4.1 Surplus Maximizing Colluders

In the main model, the principal evaluates mechanisms according to the worst-case revenue
that could arise assuming collusion is restrained only by Feas, C-1C, Joint EAIR, and EABB.
Arguably, colluders have a natural interest in maximizing their joint surplus, not in min-
imizing the principal’s revenue, so the principal evaluating mechanisms according to their
worst-case revenue may do so with too much pessimism relative to reality. In this subsec-
tion, I assume that colluders aim to maximize their joint surplus while accounting for the
key frictions discussed in section 2. I do this to determine the extent to which the principal’s
worst-case evaluation of mechanisms may be driving Theorem 1 as well as to study another
appealing model of collusion. Ultimately, I find that the mechanism identified in Theorem
1 remains optimal. In fact, the principal facing surplus-maximizing colluders can maximize
revenue just by posting a price.

Instead of evaluating mechanisms according to the worst-case revenue that can arise, the

principal first calculates the supremum of colluders’ joint surplus that can arise:

S(q,t) = sup K, ZQz Zp(ﬁlv)zti(ﬁ)}

(4,t.p)

s.t. Feas, C-1C, EABB, Joint EAIR

Because P, may not necessarily be closed, the supremum may not necessarily be achieved,
so we cannot exactly talk about the maximum colluder surplus.
As a result, the principal evaluates mechanism (g, t) according to the following compli-

cated object:

R.(q,t) —hmmf{E Zp o|v) Zt : (4,1, p) satisfies Feas, C-IC, Joint EAIR, EABB and
B> o) Zp o) 3 00~ Sla. ) <

The principal forms a conservative estimate of his worst-case revenue assuming that colluders

implement a collusive scheme that generates surplus arbitrarily close to S(gq,t). Now, the
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principal’s problem is

~

max R.(q,t
q:A—[0,1]N t: A—-RN C(Q? )
where (g,t) are constrained as in P.
It is possible to once again argue that the principal focuses on choosing between mecha-
nisms that solve f-Surplus Max for a continuous cost function f without loss of optimality.
Specifically, I show that the principal weakly prefers the mechanism that solves f-Surplus

Max to any mechanism that induces a very similar cost function, f :

Proposition 4. Suppose (q,t) induces cost function f. Define f - [0,q] — R so that

f(@) if Q €0,q)

ro=l@ o veel
th—)(j— f(Q) Zf Q =4q

Let (q*,t*) solve f-Surplus Maz for cost function f. Rc(q, t) < Rc(q*, t*).

The proof is in Appendix B. Proposition 2 goes through as well, so the rest of the ar-
gument proceeds as before. Since the principal can restrict attention to choosing between
mechanisms that solve f-Surplus Max, the principal’s outer problem is again P Outer Prob-
lem. The optimal mechanism identified in Theorem 1 is the principal’s optimal mechanism
even if colluders are assumed to maximize their joint surplus.

Given colluders coordinate to maximize their joint surplus, simply posting a price of p also
maximizes the principal’s objective. Surplus-maximizing colluders can run the pre-auction
knockout implicit in (pP*¢, tP*¢) to allocate the right to buy the good at p to the bidder with
the highest valuation above p. Intuitively, the principal no longer has to run the knockout

auction in-house because surplus-maximizing bidders will replicate it.

Theorem 2. The principal’s optimal mechanism that mazximizes Rc(q,t) 1S posting a price

of p.

4.2 Non-Negative Transfers and Constant Minimum Price

In practice, it is uncommon to observe a principal making payments to bidders in an auction.
Such an auction could attract entrants who are not competitive, e.g., always have value 0 for
the good, since the optimal auction identified in Theorem 1 makes strictly positive expected
payments to some bidders with the lowest valuation.

In this subsection, I consider an extension of the main model where the principal restricts

himself to mechanisms where he does not make payments to the bidders. For tractability, I
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focus on the special case where the principal is restricted to setting a mechanism (g, t) that
induces a linear cost function of the form f(Q) = pQ with domain [0, 1] and includes the
graph of f in Py4). I refer to these mechanisms as closed and linear. These mechanisms
have a fixed minimum price per unit of probability, which, for example, could be induced by
a deterministic reserve price. This class of mechanisms is rich enough to include common
mechanisms such as a posted price, a first-price auction with a reserve price, and a second-
price auction with a reserve price.

I further assume that all bidders are symmetric so that F; = F} for all bidders ¢ and j

and F; satisfies the monotone hazard rate condition:

1—Fi(v:) - . .
i) g decreasing in v;.
fi(vi)

Assumption 1.

The principal’s optimal mechanism is given by the solution to the following problem for

the optimal p:

max E, [Z ¢i(v)v; — t;(v)] (NN- f-Surplus Max)

¢:V—[0,1]N t:V R4

s.t. Z%‘(U) <q W

The key feature of the optimal mechanism is its ex post transfer function. Consider

mechanisms that have transfer functions of the following form:

p if v; = max;v; > Uy

e (v) =
0 ifo/w

where v; is exogenous and in [0, 1]. In these mechanisms, if there is a bidder with a valuation
above the threshold value v;, the bidder with the highest realized valuation pays p. This ex

post transfer function induces an interim transfer function:

By 0 if v; < Uy
6" (v;) = N ) .
FN=You)p if vy >0

Given incentive compatibility, the interim allocation function is given by the payoff formula,
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which allows us to write the following differential equation to describe qft(vi) for v; > vy

dg;" _p N-2
e U—ZfN 1)FV (vi) f (vi)
=:f(vi)

where f(v;) is defined as the derivative of FN~1(v;). From here, I also define F(v;) =
FN _1(vi). (jft has a positive derivative when v; > 0;. If there exists an ex post allocation
function ¢, that induces cjft as the interim allocation for each i, (¢,t) would satisfy incentive
compatibility.

Note that for any value of 7;, the lowest type of each agent must be given 0 surplus since
fft(O) = 0 and no surplus can be given to a type with valuation 0 by giving them the good.

As a result, ¢ (?,) must satisfy:

So, if v, # 0, we have that ¢ (0,) = L)
Fixing p, this family of mechanisms is parameterized by o;. It turns out that there is
a smallest 0, at which it is possible to find an ex post allocation function that induces the

interim allocation functions specified:

Lemma 5. Fiz a p € (0,1). There exists a minimum v; for which there exists an ex post
allocation function that induces the interim allocation function §°. Denote this minimum by
ve. Additionally, if v, > 0, then

1— F(v)N _ FN=Y o) (1 -
N Vg

Py [ 2y - p@as

Under some conditions, the principal’s optimal mechanism among closed, linear mecha-
nisms with non-negative transfers is the mechanism with transfers given by ¢** and interim

allocation ¢%*, where v, is as defined in the lemma above.

Proposition 5. Suppose for all p € (0,1), vy, as described in Lemma 5, is interior.

Then, the principal’s optimal closed and linear mechanism (g™, ") is such that:

e FEx post transfers are given by:

nnl ; nnl
P if v; = max; v; > vy _
il (v) = Vi, v

0 if o/w
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e [nterim allocation functions are given by:

FN— 1 (Uzml )pnnl

—nnl(, nnl —
v nnl
—nn p — ~ ~ ~ — nn. nn
4q; I(Uz‘) :/ D (N — 1)FN Q(U)f(v)dv—}-qi(vt l) Yu; € [v; 171]

where p"™ € (0,1).

The proof is in Appendix C and uses duality to establish the claim. I form a Lagrangian
and then provide feasible dual multipliers such that the mechanism described in the propo-
sition maximizes the Lagrangian and satisfies complementary slackness. The binding IC and
IR constraints turn out to be the local upward IC constraints for all types above a threshold

vl which is weakly below v;, and a range of IR constraints for types between 0 and v!%.

5 Conclusion

This paper identifies the posted price plus a knockout auction as the principal’s optimal
mechanism in the presence of collusion. By concentrating on the principal’s surplus maxi-
mization subproblem, I significantly narrow down the set of potential optimal mechanisms.
This approach highlights critical features of the optimal mechanism, specifically that it effi-
ciently allocates the good when it is sold.

The main model makes relatively few assumptions about cartel behavior. Future research
could further the study of this problem by incorporating additional assumptions. For exam-
ple, in some situations, there might not be an ex ante stage where bidders are uninformed
of their valuations. In these cases, the relevant revealed preference constraint for colluders
would be an interim rather than an ex ante constraint. Additionally, the ex ante revealed
preference constraint implicitly assumes a model of cartel formation where either all bidders
opt into the cartel or at least one bidder objects, causing the arrangement to collapse and
all bidders to revert to non-collusive play indefinitely. Capturing a different cartel formation
process could provide another promising direction for future research. For example, opt-
ing out of the cartel could result in all other bidders forming the cartel and then playing

non-cooperatively against the bidder left out.
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A  Proof of Theorem 1

In this section of the appendix, I provide the full proof of Theorem 1.

A.1 Consolidation of EAIR

As a first step, the EAIR constraints can be consolidated into a single constraint on joint

surplus.

A.1.1 Lemmal

Lemma 1: Colluders’ problem is equivalent to

infE, D p(@o) Y ti(0)]
s.t. Feas, EABB, Joint EAIR, C-IC

Proof. From every collusive scheme §, p, ¢ that satisfies Joint EAIR, it is possible to construct
a t that, paired with ¢, p, would maintains EABB,C-IC, and Feas while now satisfying EAIR.
Define Uf := E,_,[G:(v)v; — t;(v) — Y, p(0]v)t;(9)].

Y, Us > > Ul so there exist lump sum transfers {7;}; such that Uf + T; > U and
>, Ti = 0. Define #;(v) = #;(v) + T;. This new transfer function when paired with ¢ and p

satisfies all the constraints in the claim’s problem.

]

A.2 Decomposition to BNE Surplus and Cost Function

The next step of the proof is to formalize the decomposition of the effect of the principal’s
mechanism into two channels. The first channel is captured by the object P, ), which was
defined in the main text. P is the space of aggregate outcomes that can be achieved by
the colluders. The second channel is captured by the joint surplus generated by the non-
collusive BNE. This high-level claim is formalized by Lemma 2, which demonstrates that
if two mechanisms (g,t) and (¢,?) are such that P, = P and induce the same BNE
surpluses, then R.(q,t) = R.(4,f). As a result, P+ and the BNE surplus are “sufficient

statistics” for a mechanism.
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A.2.1 Lemma 2

Lemma 2: Fix two mechanisms (¢,t) and (§,). Let >, U (32, U) be the joint surplus
associated with the truth-telling BNE under (g,t) ((¢,1)). If Py = Pyp and >, Ul <
>, U, then Re(q,t) < Re(q,1).

Proof. The proof proceeds by pushing notation around. I show that any collusive scheme
feasible against (¢,%) can be mapped to a collusive scheme that is feasible against (g, ) that
produces the same expected revenue for the principal. As a result, R.(¢,t) < R.(q,1).
To this end, fix any collusive side mechanism feasible against (g, ); denote it by (p .q. t:)
)24
P Since P 5y = Pg), there similarly exists a distribution p(-|v) over action profiles such
that

(X rte S ai@ S ptem) i) = (L otel Y ito) 3 ta) it

a€A a€A acA a€A

For each v € V, p maps to a point in the space of aggregate outcomes so that (3 . , p(alv

For each v € V| it is possible to construct such a p(- |v) From here, consider (p, g, ) This
collusive scheme results in the same revenue as (p,q, ) does, and it inherits Feas, C-IC,
and EABB from (p, g, ) Since ), Ul < Z " (p,q, t) satisfies Joint EAIR as well since
(p,q, ) generates the same joint surplus for colluders as (p,q q, t). Since the total colluder
surplus under (p, ¢, t) is weakly greater than Zl , Joint EAIR is satisfied by (p, ¢, ) given

mechanism (g, t). O

A.2.2 Lemma 3

Ultimately, P, ) is difficult to work with, so it will be convenient to summarize P, ; with the

cost function generated by (q,t), f. f is defined as the lower boundary of the closure of P 4.

Lemma 3: f is (1) continuous on [0,§), (2) convex, and (3) increasing. Additionally, (4)
f(0) <0.

Proof. We start with (2), convexity. Fix (@, f(Q)), (@', f(Q')) in cl(Py ). For any a € [0, 1],
a(Q, f(Q)+(1—a)(Q', f(Q')) € cl(Pyq,)) because cl(Fg,)) is also convex as the closure of a
convex set. So, we must have that f(ag+(1—a)q") < af(q)+(1—a)f(¢') by construction of f.

For (3), increasingness, fix (Q, f(Q)), (@', f(Q')) with ' > Q. Suppose f(Q’) < f(Q). Fix
e > 0 such that min{1/2(f(Q)—f(Q’)), Q' —Q} > e. We have that B.((Q’, f(Q')) NP # 0

since (Q', f(Q") € cl(Pyy). Fix (Q,T) € B-((Q, f(Q") N Pyn. So, Q > Q and T <
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(@)= f(@") —|—~f(Q') < f(Q). Since colluders can dispose of the good, (Q,T) € Py, s0
we have that (Q,T") € P, also. This implies that 7' < f(Q). So f is increasing.

From (2), we get that f is continuous on (0,q). To show (1), continuity on [0, 7), all that
remains is to show that f(0) = f_(0). Because f is increasing, we have that if f(0) # f_(0),
it must be that f(0) < f_(0). Fix € > 0. Consider the function g(«) := af(e) + (1 — a) f(0)
where « € [0, 1]. Observe that ¢g(0) = f(0) and g(1) = g(g). g is a continuous function of «
and for any = € (f(0), f-(0)), there must be some & such that g(&) = x since f_(0) < f(e).
As a result, we have that af(e) + (1 — a)f(0) < f(ae) since f is convex. Contradiction.
10) = £-(0).

Finally, for (4), £(0) < 0 holds since every bidder i playing a?”**** results in no one getting the
good with positive probability and no one paying or being paid. As a result, (0,0) € P,
and f(0) < 0. O

From here, I refer to any function f : [0,q] — R with ¢ € [0,1] and that satisfies the

properties listed in Lemma 3 as a cost function.

A.2.3 Lemma 4

The cost function f coarsely captures how the principal’s mechanism affects what aggregate
outcomes colluders can achieve. The next lemma explores how informative the cost function
and BNE surplus are of the principal’s preferences over mechanisms. Ultimately, not much
is lost by summarizing P, by its induced cost function.

Lemma 4 is a corollary of the following lemma since it is the special case where f = f
and ¢ = ¢. The more general result will be useful in the third step of the proof, so I state

and prove it instead.

Lemma 6. Fiz mechanisms (q,t) and (q,t) with associated BNE surpluses 3, U" and 3, U
respectively. Suppose (q,t > induces the cost function f (f) with domain [0, q] ([O,qi])
>

f
where ¢ > §. Furthermore, f( ) > £(Q) for all Q € [0, ).

IfS°,Ur > 3, UP, then Ru(q,t) > Re(d,1).

Proof. We start by supposing that R.(q,t) < R.(q,t). Then, there exists (§,, p) that is fea-

sible against (g, t) and results in revenue E, [}, , p(alv) (Y, ti(a))] < R.(q,t). We will con-

struct a collusive scheme against (4, ) that has revenue bounded above by aE,[Y", p(alv) (>, :(9))]+
§ for arbitrarily small § > 0 and o arbitrarily close to 1. Asaresult, R.(4,1) < E,[}, p(alv) (X, t:(9))],
which is a contradiction. We can then conclude that R.(q,1) < R.(q,t).
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As a preliminary move, throughout this discussion, we will mostly work with the total trans-
fers that colluders pay at each v, i.e., the transfers inclusive of side payments to other bidders
and payments to the principal. Fixing a collusive arrangement (p, §,1) against mechanism
(¢,t), we can define £ (v) := > plalv)( X, ti(a)) + ti(v), the total amount i pays to
the principal and the collusive arrangement when the true profile of valuations is v. Sim-
ilarly, when side payments in a collusive arrangement are not yet specified, with only the
bid coordination plan p, specifying #1°/?(v) pins down the amount that 4 in side payments
makes to other colluders as ¢t/ (v) — > p(d]v) 3, ¢;(9) given the state is v. So, p and total

payments £ pin down . The EABB constraint on collusion can then be re-expressed as

B, [32; 7 (0)] = Bo[Yge a plalv) 3o t:()].

To start, we “scale down” (p,q,%). We do this to move Y. p(3|v) Y, ¢;(9) slightly away
from ¢ for each v. This way we will be able to take advantage of the continuity of f on

[0,G). Concretely, we consider a slightly modified collusive scheme where, fixing o € (0, 1),

we define
gfcale(v) = a(h(’U)
Z?fcale(v) — Oétzoml(v)
pscale(@yv) = ogp(@‘v) if o 7& CLoptout
scale<@’1}) = ozp(f}\v) —+ 1 — « if o= aOptout
where goPtout — (a(lthOUt’ - a})\];tout).

As a collusive scheme against (g,t), (p*¢, e, t°¢@¢) satisfies feasibility, colluder IC,
and EABB. Let’s quickly check this:

e Feasibility:

S0 = Y ade) < a0 plle) @) = 3 El) Yo ar @) Ve

7

e Colluder IC: Since (p, q,t) satisfies Colluder IC, we have that the following constraint
holds for all v; and 7:

Ev%[q} (U)vi - %otal(vﬂ 2 Evﬂ'[qu (@la U*i)vi - EZOtal(@ia U*i)]
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Multiplying both sides by « gives that

E,_ [ (v)v: — £ (0)] = Bo_ [37° (03, v-i)vi — (03, v-)]

e EABB: The original collusive scheme (p, ¢, ) gives us that

B> (o) 3 4(0)] = B[ 7 ()

%

Again, multiplying both sides by « gives us that the scaled collusive scheme also
satisfies EABB:

B[S 0 (3l0) Yo (@) = B3 6 (o)

i

The scaled collusive scheme achieves joint surplus o), U". For a sufficiently close to 1, we
can get 3, UM < a3, U < 32, Ur. Note that if (p*ele, goedle, {50¢) were feasible as a collu-
sive scheme in (§,%), then we would be done since (p*@, gsc@le t*cale) achieves a revenue of
aEy[Y e palv) >, ti(a)] < R(¢,t). The remainder of the argument shows how we can go
from (peale, g=eale £5¢ale) to something that is feasible against (g, #) by using the information

that (q,%) induces the same cost function as (g, ).

Let’s make note of some features of the scaled collusive scheme. For each v, define Q(v) :=
a) earalv)d; q(a); Qv) is the expected probability with which colluders acquire the

good when their valuations are v under (pscale, gscale gscale),

D= B, | 35 (w)| — B, [£(Q(v))]
D > 0 by the construction of f. If the graph of f was contained in F;, then bidders
could minimize the cost they pay to the principal by coordinating their bids to correspond
to points exactly on the cost function. D is the cost savings that would result from this.

Let’s build an auxiliary transfer function:

- - 1
Bl (0) = B0 (0) = =D

Note that (g*e, tscale) satisfies C-IC because transfers are shifted by a constant for each

agent i. Furthermore, if there existed a bid coordination scheme that made (G*c¢, £3¢le) a

? “new

feasible collusive scheme, this side mechanism would result in joint surplus a ), U + D.
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Fix § > 0 so that a 3, U — 2. U > §. To complete the construction of our desired collu-
sive scheme, we endeavor to find a point (Q,T) € F;; for each v such that Q(v) = Q and

T < f(Q(v)) + 6. First, if (Q(v),f(@(v))) € P,;, then there exists 3 € A(A) such that
> aea Ba) (X, di(a), X ti(a) = (Q(v), f(Qv))). Set palv) = B(a) for all a € A.

Otherwise, if (Q(U), f (Q(v))) ¢ Py, then to find our desired (Q, T), note that Q(v) <
Since f is continuous on [0, ), we can find a y € (0, q— Q(v)) such that | f(Q) — f(Q(v))| <
6/2 for all Q € [Q(v), Q(v)+9]- Consider (Q(v)+7, f(Q(v)+7)). (Qv)+7, f(Qw)+7)) €
cl(Pgp), so there exists (Q,T) € Biningsj2,,} (Q(v) + 7, FQW) + 7)) N P Note that
Q> Q) and T < min{6/2,7} + /2 + f(Q(v)) < f(Q(v)) + 4. So, (Q(v), P(qt) and

) €
there exists p(:|v) € AA such that >, p(alv) 2, 6(7) > Q(v) and >, p(alv) 3, 4:(7) =
Fix this p(-|v).

Finally, we can construct the collusive scheme against (§,7) as desired. Fix the allocation
function ¢;(v) = G@°“¢(v) for all v,i. Set j as constructed. We need to adjust the transfer

function slightly in order to achieve EABB.

=E,[Y_ plalv) Zt}(a)] ~E[f(Q()] >0

Note that B < §. Define the transfer function to be

2 1
tz’ — tscale —B
(0) = Bt (0) + 1

new,?

(p, 4, ) is feasable satisfies colluder IC because it has the same allocation as ¢ and total
transfers { are equal to t plus some constants, EABB by the construction of the transfers,
and satisfies Joint EAIR because the surplus from this collusive scheme is at least a ), U*—0.
Meanwhile, the revenue from this collusive arrangement is at most oE, [, p(alv) >, ti(a)] +
0. We have that

<E[Y ilal) Y ifa)]
< aB.[Y plale) 3 tila)] +3

Since ¢ could be chosen to be arbitrarily small and « could be chosen to be arbitrarily close
to 1, we conclude that R.(4,%) < E,[>_, p(alv) Y, t:(a)]. This concludes the proof. O
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A.3 Inner Problem: Surplus Maximization

In this subsection, I formulate the principal’s inner problem. Fix an exogenously given cost
function f, which is continuous at g. The inner problem f-Surplus Max asks what direct
mechanism maximizes the surplus generated in non-collusive play subject to inducing a cost
function weakly above f.

To solve f-Surplus Max, I relax the problem, discarding the IC and IR constraints, to
produce Relax fSM. As alluded to in the main text, we can then solve Relax fSM by solving

the pointwise problems:

max Z gi - Vi — Z ti (v-Problem)

q>0

s.t. Z%‘ <q
Zti > f(Zq»

It is clear that the (¢*,t*) that solves v-Problem for a fixed v makes the second constraint
bind so that ), t* = f(>_.¢’). Furthermore, the good should only be given to the bidder
with the highest realized valuation, so given that ¢ is the bidder with the unique highest
realized valuation, ¢f = ). ¢*. After imposing these two observations, solving the pointwise

problem is tantamount to choosing the total probability that the good is given to the bidders,
>4 =: @, for each v:

max ((maxv;) maxv; — f(Q) (reduced-vProb)
Q€[0,9] i i

The objective is continuous, so the problem is well-defined for all max; v; € [0, 1]. Since
the objective is a concave function, we have that conditions for local optimality are sufficient

for global optimality, and so an optimal Q*(max; v;) is chosen to satisfy:

/

F(Q (maxve)) < maxv; < f(Q (maxvy))

where f_ and fjr define the left and right hand derivatives of f.2

Lemma 7. Suppose cost function f : [0,q] — R is continuous at G. The solution to reduced-

vProb has the following properties:

1. Any selection of maximizers Q*(+) is non-decreasing.

?Define f7 (0) = —oo and f} (1) = oo for the sake of dealing with the corner solutions.
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2. The value of the problem is continuous in max; v;.
3. f(Q*(v)) is increasing.

4. The selection of mazimizers Q*(max; v;) == max argmargeo @ max; v; — f(Q) is well-

defined and right continuous on (0,1).

Proof. Regarding (1), fix v and ¥ such that max; v; > max; 0;. Let Q*(-) be any selection of
maximizers. Suppose Q*(max;v;) < Q*(max;v;). f is convex so it is differentiable almost
everywhere. Fix Q € (Q*(max; v;), Q*(max; 7;)) such that f is differentiable at Q. We have
that

FHQ (maxvi) < £L(Q) = f(Q) = f1(Q) < f(Q"(max ;)

By the optimality conditions, we have then that max;v; < max;0;. So Q*(max;v;) >

Q*(maxi ’ljl)

Next, we observe that we can invoke Berge’s theorem to get that the correspondence of

maximizers is compact-valued and upper hemicontinuous as well as (2).
(3) follows from (1) and since f is increasing.

For (4), Q*(-) as given in the statement is well-defined because the set of maximizers for any

instance of the problem is compact. We show that the particular selection in the statement

is right-continuous. Fix any decreasing sequence {v,}, that converges to ¢. {Q*(v,)}n is
decreasing and is bounded below by Q*(v) due to (1), so it is convergent and Q*(v) <
lim,, o Q*(v,). The correspondence of maximizers is upper hemicontinuous, so Q*(v) >
lim,, 00 @*(vy,). This implies Q*(v) = lim,, o Q*(vy,). O

Now, we fix a particular solution to Relax fSM to construct ¢*. For each max; v; € [0, 1],
define Q*(max;v;) := maxargmaxge( @ max;v; — f(Q). Define the following allocation
function for all ¢ and v:

1
ik(v) _ [{vj:vj=maxy v }|

0 otherwise

Q*(max;v;) if v; = max; v,

Given any transfer function ¢ such that ) . t;(v) = f(Q*(max; v;)) for all v, (¢*,t) solves
Relax fSM. The next result shows that with a particular choice of transfer function ¢*,

(g*,t*) also solves f-Surplus Max.
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A.3.1 Proposition 1

Proposition 1: Fix a continuous cost function f : [0,g] — R. There exists t* such that
(q¢*,t*) solves f-Surplus Max and Relax fSM.

Proof. Observe that ¢*(-) induces weakly increasing interim allocation functions since as an
bidder’s valuation increases (1) the probability that they hold the highest realized valuation
increases, and (2) the total probability at which the good will be given to the bidder in-
creases. S0, if we can provide a transfer function that satisfies the envelope theorem derived
formula for interim transfers and satisfies the ex post restrictions from Relax fSM on total

cost paid a.e., we have demonstrated that f-Surplus Max = Relax fSM.

The first step of the proof is to demonstrate that if we could find a transfer function ¢* so
that (¢*,t*) is IC, we could also satisfy IR. To do this, notice that given t* satisfies IC, we

can calculate the total surplus given to each bidders’ lowest types via the payoff formula:

> 040 =B, [Z GOLEDY t;f(v)} -3k [ [ q;(@m]
where ¥, £5(v) = £(55, ¢¢(v)) for all v.

Let ¢* : [0,1] — [0, 1] be the mapping from the maximum realized valuation to the optimal
probability at which to acquire the good. Lemma 7 establishes that ¢* is increasing and is
right-continuous on (0, 1), so it is differentiable almost everywhere with jump discontinuities

only at countable locations. Let V; be the set of discontinuities in ¢*.

Since ¢* is increasing, we can identify a threshold v, at which ¢* starts being strictly positive.

Formally, define:

v = sup{v € [0,1] : Q*(v) = 0}

For v > v;, we can define f(v) = f(¢*(v))/q*(v), the optimal cost per unit of probability
that colluders will pay in total when the maximum value is v. Note that since f is continuous

on [0,q|, f is discontinuous at v € [0, 1] if and only if ¢ is discontinuous at v.
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Let’s massage the expression for ). U;(0):

> o0 =3 [ [aww-fon- [ g+ [ -oimw
-% [ [T Ewaee-ion - [ TTaoaew] e+ [ o)

J#i vt G X ~— .

v >0

The second term is weakly positive since f(0) < 0, so we concentrate on assigning a sign to S;.

We can integrate the last term by parts:

[ Me@aeds=THwrwe - Y [Iseres: - [ (] soro)
Ut jF#i Ve ’UGVdﬂ(Ut,Ui) e vt JF#i
Putting it back together:

5= | [(Hw)q:(w))(w - TIE@Ten+ S [[BEFE:

i i vEVuN(ve,vi) i

+/m ad( HF ]dF(ui)
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+

T 5 ()3 (s — fm»nt} 0F(v,)

vt J#i vEV N(ve,v;) 71

_ /ml(l — Fy(v:))(vi — f(vi)) <d( L ZJ;@)T@)))

U=v; dvi

d( 11,2 F5(0)3 (5))
dv

is increasing. Furthermore, v — f (v) > 0 for all v since surplus maximization implies that
i(0)o — £(3()) > 0.

If E,[f(> ;¢ (v))] # 0, we can take any division of the surplus to the lowest types such
that for all 4, U;(0) > 0. We will show that the value of Relax fSM can be achieved by

constructing a transfer function t* that satisfies the payoff formula and hits the ex post

where is defined almost everywhere and weakly positive because [[,; F;(9)¢*(?)

constraints required for optimality identified by the solution to Relax fSM. To this end,
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define constants x; so that

B[
RIS )]

where £ (v;) is given by the payoff formula

ti(vi) = ¢ (vi)vi — Us(0) — /Ovi 7 (0)do

The following transfers satisfy the constraints ). t(v) = f(3_, ¢/ (v)) for all v and match

the interim transfers required for IC:
ti(v) = mif (Y qr(0) + () = mE, [ i ()]
-~ ()~ mE [f(; Gi())

J#i

IfE,[f(3> ;¢ (v))] = 0, consider a particular restriction on the division of surplus between

the lowest types. The idea is to also restrict each bidder’s expected transfers to be 0, i.e.,
E, [5;(v)] =0 Vi

This restriction pins down the surplus to the lowest type for each bidder through the payoft

formula:
Ui0) = Eufa (v - [ (@) = 0
0

where the inequality holds because ¢*(-) is weakly increasing in v;. Now, the following
transfer rule satisfies the desired interim transfers and ), ¥ (v) = f(3_, ¢;(v)) for all v:

11(0) = A (i 0) + ) — B A at(w))]
-y (S - gL o)
J#i k
This concludes the proof. n

The mechanism that solves f-Surplus Max lacks opt-out actions for each bidder, but
since it satisfies IR, it is easy to remedy this by adding actions. As described in the main

text, I augment (¢*,t*) by defining q}‘(afptout,a_i) = 0 and t;(a@tom,a_i) for all 7,7, and

)
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a_;. IR ensures that no bidder will deviate from their strategy in the truth-telling BNE to
playing their opt-out action. This augmented mechanism is feasible for the principal. From
here, I use (¢*,t*) to refer to the solution of f-Surplus Max augmented with opt-out actions

as described.

A.3.2 Proposition 2

Ultimately, I will show that it is without loss for the principal to restrict attention to opti-
mizing over mechanisms that solve f-Surplus Max for a continuous cost function f. To that

end, we should know what the worst-case revenue generated by these mechanisms is.

Proposition 2: Suppose (¢*,t*) solves f-Surplus Max for a continuous cost function f.
Then, the value of the colluders’ problem facing (¢*,t*) is E,[f(D_, ¢; (v))].

Proof. Facing (q*,t*), colluders’ adversarial collusion results in at most the revenue from
the principal’s preferred BNE, E,[f(>_, ¢/ (v))]. I show that R.(¢*,t*) = E,[f(>_, ¢ (v))] by

showing that every collusive scheme results against (¢*,¢*) must result in revenue at least

LAVIOSHOIIE

First, observe that with probability 1, there is a single bidder with the maximum realized

valuation. Next, let
Vi i={v € [0,1] : reduced — vProb has at least two solutions}

With probability 1, the solution to reduced-vProb is unique:

Lemma 8. V,, has measure 0.

Proof. Fix a max; v; € V,,,. Let Q and @)’ be two distinct solutions to reduced-vProb with
Q < @'. The concavity of the objective implies that any convex combination of ) and
@’ also solves the problem, so (@, Q'] is a subset of the solutions to reduced-vProb. The
local optimality conditions imply that f(Q) = max;v; for all Q € (Q,Q’). Denote the
interval (@, Q') by I(max;v;). Every max;v; € V,, can be mapped in this way to a non-
degenerate I(max; v;). These intervals are pairwise disjoint, i.e. I(max;v;) N I(max; ;) = 0,
since @ € I(max;v;) N I(max; ;) implies max; v; = f/(Q) = max; v;. We can map each
max; v; € Vipazm to a distinet rational ¢ € I(max; v;) N Q. Thus, Vj,4z.m is countable and so

has measure 0. ]

31



Fix a collusive scheme against (¢*,t*), (g,%,p). The special feature of (q*,t*) is that it

maximizes joint total surplus for each v given a cost function f(-):
> g (v — £ (v) = @ (maxv;) maxv; — f(Q (maxv;))
> Gi(v =y p(ofv) Y (D)

In the second line, I observe that the collusive scheme’s effective contribution to joint surplus
is weakly below the joint surplus generated by the BNE at each v. Since any collusive
scheme (4,1, p) against (¢*,t*) must raise at least E,[>, ¢ (v)v; — f(3°, G (v))] in surplus
for the colluders, the above inequality must bind with probability 1. With probability 1,
there is a unique bidder with the highest realized valuation, and by Lemma 8, we have that
> Gi(v) = Q*(max; v;) with probability 1. Let

A= eV Y g —0) = Y an - pel) Y )

and reduced-vProb has a unique solution}

Note that A occurs with probability 1. For each v € A, we have that ) . p(0]v) >, t5(0) >
f(Q*(max; v;)). So we have that E,[Y - p(?]v) >, t5(0)] > E,[f (D, @*(max; v;))]. O
A.3.3 Proposition 3

Fix a cost function f : [0,q] — R. Define f : [0,7] — R so that f(Q) = f(Q) for all Q € [0, )
and f(g) = f_(q). This cost function is nearly f but is continuous at ¢. It will lead to a
well-defined f-Surplus Max.

Given the value of setting a mechanism that solves f-Surplus Max for cost function f, we
can now show that any mechanism (g, ¢) that induces the cost function f achieves a weakly

lower worst-case revenue than (¢*,t*).

Proposition 3: Suppose (g, t) induces cost function f. Define f : [0,g] — R so that

f(@) if @ €[0,q)

f@Q =" e
limg_,- f(Q) Q=g

Let (¢*,t*) solve f-Surplus Max for cost function f. R.(q,t) < R.(q*,t%).

32



Proof. From Proposition 2, R.(¢*,t*) = E,[f(D_, ¢ (v))].

To show that R.(g,t) is weakly below R.(¢*,t*), let Y. U be the surplus from the truth-
telling BNE of (¢,t), and let ) . U} be the surplus from (¢*, ¢*). Since (¢*,t*) solves f-Surplus
Max and f < f, we have that 3, U < 7. Ur. Consider two cases:

o > UM< > U’ Lemma 6 applies.

o > .UM=)> U} First, observe that the following inequality holds for all v:

S a0 = > t0) € 3 a(w) maco; = F(3 a(v)

< Q*(maxv;) maxv; — f(Q*(maxv;))

since f > f. Furthermore, this inequality must bind for almost all v since ) . U =
>, Ur. Given that £(q) > f(q), then the set {v € V : Q*(v) = g} must have probability
0. So, with probability 1, @*(v) < G. The above inequalities holding at equality almost
everywhere allows us to use Lemma 8 to conclude that for almost all v, Q*(v) =
>:qi(v). As a result, the revenue from the non-collusive BNE of (g,t) is equal to the

revenue from the non-collusive BNE of (¢*, t*):

EU[Z t:i(v)] = E,[f(Q*(v))]

We have that R.(q,t) < E,[f(Q*(v))] < R.(q*,t").

A.4 Outer Problem: Optimization of Cost Function

The previous steps of the argument show that it is without loss for the principal to optimize
over mechanisms that solve f-Surplus Max for a continuous cost function f. In this sec-
tion, the principal’s problem is completed with an outer optimization over continuous cost
functions, P Outer Problem.

Since (¢*, t*) that solves f-Surplus Max allocates the good to the bidder with the highest
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realized valuation, we can also write the principal’s problem as

max E,[f(Q(v))]

gel0,1],f:[0,q| =R
s.t. f(0) <0

Q" (max v;) solves reduced-vProb

f is a continuous cost function

This problem can further be relaxed to the following problem:

max E, [f(Q*(mZaX ;)]

gel0,1],f:[0,q| =R

s.t. @*(maxw;) solves reduced-vProb

reduced-vProb > 0 Vmaxuwv;

where the requirements that f be convex, increasing, and continuous have been dropped and
f(0) < 0 has been replaced by the milder necessary condition that the value of v-Problem
be weakly greater than 0 for each v3. Using the revelation principle, this relaxed problem is
equivalent to designing a revenue-maximizing direct mechanism to sell the good to a single
bidder subject to the usual incentive compatibility and individual rationality conditions.

Using Myerson (1981), the optimal mechanism to set as a revenue-maximizing principal
facing a single bidder is to post a price. Let p be the optimal price. As discussed in the main
text, this mechanism can be implemented with a cost function f(Q) = pQ. The optimal
mechanism is such that the truth-telling BNE solves f-Surplus Max with f(Q) = pQ, with
opt-out actions included as described in the main text. This is the mechanism discussed in
Section 3.1.

3Requiring a convex and increasing f is without loss for P Outer Problem. Suppose Q' < @ but
f(@) > f(Q). Then, by choosing (Q, f(Q)) over (Q’, f(Q’)), the bidder gets the good with at least as
much probability for strictly less cost. The optimizing bidder would never choose (@', f(Q')) in equilibrium;
(Q', £(@") could be replaced by (@', f(Q)) with no impact on the principal’s revenue. In this sense, requir-
ing f to be increasing is without loss. It is a result of the bidder’s optimizing behavior, not an exogenous
restriction on the types of menus that can be set. Similarly, a convex f is without loss if the bidder being
screened can play mixed strategies.
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B Proposition 4

Proposition 4: Suppose (g,t) induces cost function f Define f : [0, 7] — R so that

f(@) if @ €[0,q)

f@=3" T
limgoe- f(Q) Q=g

Let (¢*,t*) solve f-Surplus Max for cost function f. Rc(q, t) < ]:Ec(q*, t*).

Proof. As a first step, notice that R.(q*, t*) = E,[f(33, ¢*(v))]. This follows from the proof
of Proposition 2, which uses Joint EAIR to conclude that any possible collusive arrangement
must result in the same expected revenue as the truth-telling BNE of (¢*,¢*). Adding as-

sumptions about colluder behavior does not change this argument.

Next, let Y. U be the BNE surplus of (gq,t), and let >, U} be the BNE surplus of (¢*,t*).
I consider two cases: (1) >, U < > .Uf (2) >, U* = > . US. In the second case, the
proof from Proposition 3 for this case >, U = >, U showed that any collusive scheme
that satisfies JEAIR must also produce E,[f(D_.¢*(v))] in revenue. This observation still
applies in this case and pins down Rc(q,t) = Rc(q*,t*). In the first case, Y, U/ is an
upper bound on the total joint surplus that can be generated by collusion against (g,t).
Furthermore, in the proof of Lemma 6, I provided a construction of a collusive arrangement
against (¢, t) that approximates the BNE of (¢*,¢*). This collusive scheme produces surplus
of at least a ), U — 6 where 6 > 0 and is arbitrarily small and « is arbitrarily close to 1.

This collusive scheme results in revenue which is at most E,[f(32; ¢*(v))] 4+ 0. As a result,
R.(q.t) < Re(q*, ). O

C Non-Negative Transfers, Linear Cost Functions

C.1 Lemma 5

We directly check the Border inequalities (Border 1991):

1 N
1—-F V;
[ atwar) < = e g
to verify the existence of an ex post allocation that corresponds to the interim allocation

function. Note that the expression on the RHS is increasing as v; decreases since F(v;)
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decreases as v; increases. So it is sufficient to check the above inequality for v; € [0y, 1] since
satisfying the inequality at v; = ¢, implies it is satisfied for all v; < ;.

Let’s massage the expression on the LHS, dropping the i subscripts due to the symmetry:

/Ul G(0)dF () = /Ul (/j d2?>d@+Q(ﬁt))dF(ﬁ)

it

— | ZF@(F®) - F(v)ds
—q@)(-Fe)+ [ L@ - poydi+ [ Ei@a - red

Lemma 9. If v > v > 0, and the Border inequalities are satisfied with Uy = v, then the

Border inequalities are satisfied with vy = 0.

Proof. To show this, we focus on how the LHS of the Border inequalities changes as ¥; changes
to demonstrate that as 0, increases, the LHS decreases. Recall that g(¢;) = £ FN~!(4;). Let’s
then calculate the derivative of the LHS wrt 0, for v > v;:
dq(vy)

dvy

dLHS,
dv,

_ _U%f(ﬁt)(l — F(3;)) + (1 = F(v))
— _Piuna - Fo _ ppy (L0 F 0

= =5 JE) (1= F(&) + (1= F( ))( W@y >
= —U%f(ﬁt)(F(v) — F(0,)) — (1 - F(”))F(Tgst)p =0

As a result, given © > v and that the Border inequalities are satisfied with v, = v, we have

that for all v > 0, the change in the LHS going from 0, = v to 0y = 0 is

[,
v dvt

For v < ¥4, the LHS is
. A "p .
a(6)(1 - F)) + [ 2@ - F@)o
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and the derivative of the LHS is

deZSZ =~ 2 @)1~ F@)) + (1~ F(5) 24

= —f(0)q(0) — (1 = F(v)) ———5—
For © € [v, 0], the change in the LHS is:

YdLHS, " dLHS,
/v i (T)dT—l—/@ a7, (t)dr <0

Since the LHS of the Border inequality decreases for every v, the Border inequalities continue
to hold at v. N

Lemma 10. The Border inequalities are satisfied with Uy = p.

Proof. Take ¥, = p. As a result, q(p) = F¥~1(p). The Border inequalities are

FN—l(p)(l — F(v) + /” %f(f))(l — F(v))do +/ %f@)(l — F(0))dv ; iN(v)

Let’s take the derivative of both sides of the inequality with respect to v.

I P - ) [ B

> —f(v) (FNl(p) + /p ;(@)dﬁ)

— 1) (P (0))

_ dRHS
dv

So both LHS and RHS decrease as v increases, but the RHS decreases faster at every v. As a
result, it suffices to check whether LHS(1) < RHS(1) to establish that LHS(v) < RHS(v)
for all v € [0y, 1]. Tt is clear that LHS(1) < RHS(1) holds since both are equal to 0. So, we

conclude that the Border inequalities are satisfied with 0; = p. O

Observe that the LHS and RHS of the Border inequalities are continuous in v; for v, €
(0, 1), so let ; be the infimal threshold v for which the Border inequalities are satisfied. The
Border inequalities are satisfied at this ¥, so the infimal ¥; is the minimum ¢; at which the

inequalities hold.

Lemma 11. If v, is interior, then the Border constraint binds at v;.
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Proof. Suppose the Border constraint did not bind at v; so that
1—F N 1
# - / G(0)AF(5) > 0

I will show that if v; > 0, there exists v; < v; such that the Border constraints are satisfied.

= [ aware)] = -0 - pw)+ L - Fo)
~a-re) T2 0

Further, we can express the difference between the RHS and LHS of the Border inequality

for v as:

# - / 1 q(0)dF (0) = # - / j q(0)dF (o) + / d% <# - / 1 q@)dF(@)) b

Let’s rewrite the last term:

/ CZ> (# _ /ﬁl ci(ﬁ)dF(ﬁ))d@ _ / () (F(vt)(v% 1)+ /(g - 1)}:@)%) .

Our goal is to show that Jv; < v, such that

1—;(1)) _/v q(ﬁ)dF(ﬁ)JF/;di%[%_/v q(0)dF(®)] >0 Yu >,

We can rewrite the above inequality as:

1—;@) _/v q(ﬁ)dF(ﬁ)E/v:td%t[—l_Z(v) —/v q(9)dF(v)] =(1—F(v))/v;t F;,—a(ﬂt)pd@t

t

The RHS is given by

[ r@(Feo® -~ [ =i i =EO [ gwar

V¢ (%

This function of v € [v, 1] is single-peaked since the derivative with respect to v is

f@@wmﬁ—mﬁfv—nﬂ>

(% v

This derivative is strictly positive at v = v; since v; < p. Furthermore, this derivative is
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strictly increasing on (v, p) and strictly decreasing on (p,1). If the derivative ever crosses
0, it must do so on the interval [p, 1] since the derivative starts strictly positive. Further-
more, this point is unique, if it exists. Finally, observe that such a point must exist because
% — fll q(v)dF(v) = 0. If the derivative was > 0 over [v,1], then we would have

# — fll q(0)dF(v) > # - /., L @(0)dF () > 0. So, call the unique point at which

the derivative crosses 0, v**. v < 1 by this argument.

Finally, we can choose € > 0 small enough that 1 — ¢ > v**. The derivative is strictly

negative over the interval [1 — ¢, 1], so define

de[l—e,1] Vg v

k:= max F(vt)(£—1)+/ﬁ(g—1)f(@)d@<O

k is well-defined because the derivative is continuous and [1 — ¢, 1] is compact. Consider the
affine function through (1,0) with slope k. Say this affine function has value y at 1 — .
Now, define 3/ := min{y, 1= F(”t f 0)} > 0. Consider the affine function through
(1,0) and (v, 9'). Denote 1ts slope by —s. Note that s < 0. This affine function is be-

low ——~— I_F () N fl (j y TNJ) on the interval [Ut,vth] since y/ < % _ Ulf cj(f))dF(f;) and
- Fv)N f q( s increasing on [Uta th]- Next, for all v 6 [vth 1 —¢l, ‘17—6\(/U)N _

f q(v ) is decreasmg so =£ U) f q(v ) >y >y and =EW f q(v

above the afﬁne function through (1, 0) and (vt, ) Flnally, the affine functlon through (1, 0)
and (vg,y') is weakly below the affine function through (1 O) and (1—¢, y) The affine func-
tion through (1,0) and (1—¢,y) is by construction below =5 f q(v on [1—g, 1].

Next, choose § > 0. Consider lfﬁv)N - fvl q(0)dF(0) for v € [vy — 0, v;]. On this interval,

we have that
1—F(u)N ! 1—F(u)N !
- [ aware) - =3 - [ aware
1—Fo)Y [
> # —/ G(0)dF (%) > 0
We would like to show that Jv} < v; such that
1— F(u)N v y v
el - [aoire) > [ <[ Lo - Fo)
v vy t

F I > 0} B0 - F(0) + P

Uy

| oS

| =
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To this end, define for all o; € [v; — 0, vy]

Fe) (- F(v))} I > o) L%fw»(l _R@) + F(m)f(@)]

k() = sup I{o, <o} {%
vE[vs—8,v¢] Vg
Notice that (%) > 0 since f and f are continuous and so have maximum values bounded

away from 0 on this interval.

D F@)(1— F(i >>+F<@t>f<@t>]d@t

)
Uy

/ k() dvy > / I{3; < v}[q32 (3:)(1 — F(v ))} + I{#; > v}

W|@

for each v} € [v; — 6, vy].

—1_?”) - / Q(ﬁ)dF(ﬁ)>—1_Zjv(Ut) - / q(0)dF ()

Z / Ii(@t>d'ﬁt

t

Since the RHS of this inequality is continuous in v}, we can pick a v; sufficiently small to

make the above inequality hold.

Define s’ = min{s, max,ep, s F(v)" "' f(v)} > 0. Finally, observe that we can choose

vy < vy so that v, — vy < 6, vy < v} and
1—Fl)™ [t NN G,)
L [a@are) > 0 - Fe) [
Vi v} t

and

Flwn) / Mpdvt <

;U

This is sufficient for

1—;(1)) _/v q(8)dF(v) > (1—F(v))/: Fv—t()pdvt Vo € [v}, 1]

We have shown the claim. O
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C.2 Proposition 5

First, observe that if the principal sets a mechanism that induces a linear cost function
with slope p < 0, then in the worst case collusive outcome, the principal makes weakly
negative revenue. For any collusive arrangement (p, §,%), colluders can lower the principal’s
revenue by coordinating on aggregate outcomes with expected cost arbitrarily close to the
cost function. The cost function is weakly negative for all @ € [0,1], so the worst-case
revenue for the principal is weakly negative.

Next, observe that if the principal’s mechanism induces a cost function with slope p > 1,
then the joint surplus of the truth-telling BNE must be 0. The ex post joint surplus of
bidders playing the BNE is at most 0. If the bidder with the highest valuation receives the
good with probability @), this generates a surplus of () max;v;, but whenever the good is
acquired with probability (), bidders pay in total an amount that is weakly greater than
() max; v;. So, the joint ex post surplus of bidders playing the BNE is weakly less than 0 for
all value profiles v. As a result, all bidders playing the opt-out action is a feasible collusive
arrangement and results in a revenue of 0 for the principal.

Thus, for the principal to make positive worst-case revenue, he must set a mechanism
with p € (0,1); as long as such a mechanism results in a positive BNE surplus, then the
principal will make strictly positive worst-case revenue when facing colluders since colluder
must purchase from the principal in order to generate positive surplus from collusion and
beat the surplus from non-collusive play. The rest of the argument proceeds by solving the f-
Surplus Max problem for f(Q) = p@Q while additionally requiring that ¢ > 0. The condition
of Proposition 5 implies that each p € (0, 1) results in an interior v; for each p € (0,1), it
is possible to verify that the mechanism given in the statement of the proposition solves the
f-Surplus Max problem. I do that by using weak duality.

Let’s write the Lagrangian:

L(q,t, N\, 7, 1, ) = /q,»(v)vi — t;(v)dF(v) + Z / Ai(v;) [ — Zgz (0;)0; + %] dv;

+ Z /v Vi |:qi(6i)1~}i — ﬂ-(fzi)} dv;
+ /U/i(v)(; ti(v) —p;qi(v))dv + /vﬁ(v)(l — ;qi(v))dv

To construct the multipliers, first define some objects:

p [, 9dF;(0)
filve)(ve)(p — ve) + p(1 = F(vy))

C .=
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Choose the multipliers on the local IC to be

fvz — CdF;(0)

v;

AMvi) =

for the subset v; € [v/%, 1] with v/® given by the solution to:

Jyyn 04F;(0)
L= Fivff)
Observe that v/ < v, since
. p J,, 0dF(0) _ o 1F()
Sl @) (p =) +p(1 = Fv)) = (1= F(i))
Sy 9dFi(9)

since p > ¥; and additionally is increasing in x. Notice also that A(v;) is clearly

1—F(x)
single-peaked at v; = C. Another feature of v/ is that \(v/f) = 0.
With these objects, we study a particular further relaxation, setting the local IC multi-

pliers A to be 0 for v; < v/® and setting the IR multipliers v to be 0 for v; > v/

e h ) = [aton = e+ 3 [ ] - oo i

Integration by parts and then collecting the coefficients of all ¢;(v) and ¢;(v) variables gives:

) = fi(vo)Xi(vi) + p(v) <0 if o > off

) = foi(v—i)vi(vs) + p(v) <0 if v; < o/

F)(vi) + falvi)Ni(wi) + Xy(vi)vi) — pu(v) = fo)I{maxv > v} <0 if v; > o/F
)W) + foi(v_i)vi(vi)vi — pu(v) — Bv){maxv > v} <0 if v; < v]F

We seek to find dual multipliers such that the mechanism in the proposition statement
is optimal. So, if max;v; > v;, we would like the g;(v) constraint to bind for any i where
v; > vy Given our choice of local IC multipliers, we have that that f(v)(v;)+f_i(v_;)(N\i(v;)+
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No(vi)v;) = f(v)C for all v as long as v; > v/, As a result, we can choose 3(v) to be

Av) = f(0)C = pp(v)

for all v s.t. max;v; > v, and p(v) is chosen for all v such that max;v; > v/® so that
ti(max; v;) binds where ¢ is the bidder with the highest realized valuation (which is above v,

by assumption):
p(v) = f)(1+ X(v:)/ fi(vi))

Otherwise, p(v) = f(v)(1+ N(v/®)/f:(vI®)). Furthermore, ~;(v;) is chosen so that
7i(v:) = filv)Xi(vf ™)/ fi(of")

This is a full specification of candidate dual multipliers. To verify dual feasibility, we go

constraint by constraint:

L —f() — foi(v_)N(v;) + p(v) <0 if v; > vlf. This will be verified if we have that

L+ Aj(maxv;)/ fi(maxv;) <1+ N(vi)/ fi(vi)
J J

2. —f(v) — foi(v_i)vi(v;) + p(v) <0 if v; < v This is equivalent to

L+ X))/ fi(o/") < 1+ N(wi ™)/ fi(vl®) i maxv; < op"
J

L+ No(v)/ fi(v;) < 14+ X0/ fi(of™)  if maxv; > o/
J

The second inequality will hold if 1 + A.(v;)/ fi(v;) is decreasing in v;.

3. f(0)(vg) + foi(v_i) N (vs) + Ni(vy)v;) — pp(v) — B(v)[{max v > v, } < 0if v; > v!E. Now,
if maxv > vy and v; > v/f this inequality holds because f(v)(v;) + f_i(v_;)(Ni(v;) +
N, (v;)v;) was constructed to be f(v)C. If maxv < vy, then p(v) = f(v)(1+N. (0! %)/ fi(v]T)),

we should have

F)C = pf)(L+ N(vy ")/ fi(vr ")) <0
C < p(L+ Ni(vy ™)/ fi(vi™))
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which holds because

1. .
, c  [r0—CdF(0)
LX) 0l = -

t

fi(w{®)(v{T)?
_ ¢ (-FREMC-0)
RTA fi(of®)(vf)?
e
of"

and U{R < v <p.

4. f()(v) + foi(v_i)vi(v)v —pp(v) — B(v){maxv > v;} < 0 if v; < v, If we have that
maxv > v, we have that

Fyvi + fFN (™) fiv{F)vi — pu(v) < f(0)C = pp(v)
vi + (vl )/ filv o < C = o1+ XN (0])/ fi(v]"))

which follows since v; < v/f. Now, suppose maxv < v;. We would like to show that

F@yvi + fF)X(0/™)/ filo{)vi = pp(v) < 0
vi + Ni(v )/ o v < p+ X0/ o )p

which holds since v; < v/® < p.

Let’s go variable by variable to verify that multipliers are weakly positive:

1. Local IC multipliers:

is easy to verify because A(-) is single-peaked and v/ is set at the value where A(-)
first becomes positive.

2. IR multipliers:

Yi(vi) = fi(vi))\;(v{R)/fi(v{R)

again comes from the single-peakedness of A(-). At v!®, )\; is increasing.
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3. Menu cost: If
L+ X (9)/£i(0)

is decreasing in o, then it is sufficient to check that 1 + X;(1)/fi(1) > 0 to get that
p(v) >0 for all v. In the end, 1+ X,(1)/f;(1) =C

4. Feasibility:

f0)C —pu(v) <0

% <1+ M(maxv)/fi(maxv)

Again, if 1+ N)(0)/fi(?) is decreasing in ¥, we just need to check that C/p < 1+
Ni(max v)/ f;(maxv) holds for maxv = v/f which we checked in point 2 of the dual

feasibility check.

To complete the verification that the dual variables are weakly positive and satisfy dual
feasibility, observe that 1+ Xj(v;)/ fi(v;) is decreasing in v; since
C [, 0—CdF(d)
L+ X(0)/f:(0) = = — ———
R N TG0,
C 11— F%) e
=4 ——— E >

- +172 @) (C —E[5]o > 9))

Notice that the claim follows since C/v, 1/0%, (1 — F;(0))/fi(?), and C' — E[0|0 > 9] are all

decreasing in v.

The mechanism given in the proposition statement maximizes the Lagrangian fixing these
dual variables since it sets ¢;(v) to be 0 whenever v; < v; and ¢;(v) to be 0 whenever v; is
not the maximum valuation or the maximum valuation is weakly lower than v;.

The last step to showing that the mechanism is optimal is to verify complementary
slackness. Notice that the local IC constraints hold at equality due to the payoff formula.
Furthermore, the IR constraints hold at equality for all v; < v/f. Next, observe that if
we could show that 1 = )", ¢;(v) for almost all v where maxv > v;, then we have finished
verifying complementary slackness since for almost all v, we would have ) . ¢;(v) =p ). ¢;(v)
and 1 = ). ¢i(v). Since v, is interior for any p € (0,1), then Lemma 11 tells us that the
Border inequality binds at v;. This implies that

! 1—F(v)N 1
Pr(i gets the good) = / q(0)dF(v) = # = NPT(maXU > vy)
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Since the interim allocation is symmetric, we have that this implies

Pr(any bidder gets the good) = Pr(maxv; > v;)
J

The interim allocation function implies that the good is not allocated to any bidder when
maxv < v, so verifying that the Border constraint binds at v, is enough to show that

1 =)".qi(v) holds with probability 1 given that max; v; > v,.
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