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Abstract

A principal sets bonuses for agents to ensure that the induced game will have a

unique outcome where all agents work rather than shirk. I explore three notions of

outcomes: (1) Nash equilibrium (2) correlated equilibrium (3) rationalizability.

It is weakly more expensive for the principal to uniquely implement working

under (1) than under (2) which in turn, is more expensive than implementing

under (3). I show that when the production technology is anonymous, these

weak inequalities in cost hold at equality. When the assumption of anonymity

is weakened to a condition I call aligned marginal contributions, I show that

there can be a strict gap between uniquely implementing under Nash compared

to correlated equilibrium, but there remains no gap between implementing under

correlated equilibrium compared to rationalizability. Finally, I provide a sufficient

condition under which there is a strict gap between achieving unique correlated

equilibrium and unique rationalizable strategies.

1 Introduction

Consider a setting where agents choose whether to exert effort on a group project. A

principal sets bonuses that will pay out to agents when the project is successful in order

to guarantee that all agents work. How low the bonuses can be set while achieving this

goal may depend on exactly how the team members interact. Have the agents worked

together on projects before? Can agents communicate or otherwise coordinate their ac-

tions? Different answers to these questions mean that the principal should use different

∗University of Chicago

1



solution concepts to understand how agents will play the game.

This paper explores three solution concepts in this setting: (1) Nash equilibrium, (2)

correlated equilibrium, or (3) rationalizability. Nash and correlated equilibrium both

posit that agents are aware of each other’s strategies and, taking them as given, choose

their own strategy optimally. Nash equilibrium assumes agents take their actions in-

dependently while correlated equilibrium allows for rich ways of coordinating agents’

actions including communication. Both solution concepts are appropriate for settings

where team members have worked on many projects together and are habituated to

each others’ strategies. Because Nash equilibrium assumes independent mixing, it is

more appropriate for settings where agents cannot coordinate their actions, while cor-

related equilibrium captures environments where team members can freely talk to each

other and possibly organize their shirking through communication without taking an

explicit stand on the exact protocol through which agents communicate. Rationaliz-

ability, on the other hand, does not restrict agents to play best responses to each other’s

strategies. Agents can play any action that survives an individual, iterative reasoning

process that is constrained by common knowledge of the game’s payoffs and rational-

ity. Team members that have never worked together and have little awareness of how

each other will act likely are probably best described by rationalizalibility rather than

solution concepts that presume common knowledge of others’ strategies.

In this paper, I study three versions of the principal’s problem corresponding to these

three solution concepts and identify settings where there are no differences in the values

of the problems and settings where there are strict differences. I interpret the existence

(or non-existence) of differences as reflecting the increased (or equivalent) difficulty of

resolving strategic uncertainty when allowing for correlated actions or the failure of

common knowledge of others’ strategies.

So far, the literature on unique implementation in the team effort setting has focused

on the case where the underlying base game between workers is supermodular. Given

an order on agents’ actions that the analyst supplies, supermodularity is essentially

an assumption on the shape of an agent’s difference in payoffs switching to one ac-

tion over another as the actions of other agents vary. It ensures that the lowest (and

highest) rationalizable actions of each agent are mutual best responses1. As a result,

when the base game is supermodular, bonuses that achieve unique implementation in

Nash equilibrium also achieve unique implementation in rationalizable strategies and

unique implementation in correlated equilibrium. This paper departs from previous lit-

1See Milgrom and Roberts (1990)
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erature by setting aside supermodularity and exploring orthogonal assumptions on the

base game. Without supermodularity, studying the different solution concepts requires

grappling with their mathematical differences. Nash equilibrium and rationalizability

correspond to fixed points of particular mappings while correlated equilibria are solu-

tions to linear programs. Generally, comparing the solution concepts seems hard, but

this paper is able to make progress in certain important cases.

I first study the three solution concepts when the production technology is anonymous

so that the probability of project success depends only on the number of agents work-

ing rather than their identities. This setting has been regarded as an important special

case in previous literature (see Winter (2004) and Halac, Lipnowski, and Rappoport

(2021)) but to the best of my knowledge, has not been studied without also assuming

supermodularity. The first main result Theorem 1 states that if production technol-

ogy is anonymous, there is no difference in the costs of implementing in unique Nash,

unique correlated equilibrium, or unique rationalizable strategies. The proof proceeds

by demonstrating that any bonus profile where working is the unique Nash equilibrium

also establishes working as the unique rationalizable strategy. I establish this with an

algorithm that takes in any bonus profile and finds a pure strategy Nash equilibrium in

the resulting game. The algorithm’s outcome gives a bonus that implements working as

a unique Nash equilibrium compactly establishes various lower bounds on individuals’

bonuses. It turns out that these lower bounds on bonuses are already so high that any

bonus profile that implements working in a unique Nash equilibrium must also virtually

implement working as the uniquely rationalizable action profile.

Next, to further explore the equality between unique correlated equilibrium and unique

rationalizable strategies, I weaken anonymity to a condition I call aligned marginal con-

tributions. A production function satisfies aligned marginal contributions if, given some

agent is marginally more productive when the set of workers J1 are working than when

J2 are working, then all agents not in J1 or J2 are more marginally productive when J1

works than when J2 works. Theorem 2 shows that if the production technology satisfies

aligned marginal contributions, then there is no gap between the cost of implementing

uniquely in correlated equilibria versus rationalizable strategies; in contrast, there can

now be a gap between the cost of implementing in unique Nash equilibrium and imple-

menting in unique correlated equilibrium and rationalizable strategies.

To establish this, I produce a duality based characterization of when a finite game has

a unique pure strategy correlated equilibrium (Proposition 2). This characterization

leads to a simple necessary condition on bonuses that implement in unique correlated
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equilibrium (Lemma 3). Specifically, it can be shown that for any set J of agents that

are working, if J is not the set of all agents, there must be an agent i /∈ J who would

strictly prefer to switch from shirking to working. This condition is enough to demon-

strate that all agents must find working uniquely rationalizable when the production

technology satisfies aligned marginal contributions.

Intuitively, a production technology satisfies aligned marginal contributions when agents

are complementary in a similar way. The last main result of the paper, Proposition 5,

explores when agents differ in their productivities in a way that ensures the existence of

a strict gap between the cost of implementing in a unique correlated equilibrium com-

pared to implementing in unique rationalizable strategies. To make working an agent’s

unique rationalizable action, the principal must pay the agent a bonus high enough to

motivate working given their worst case conjecture about others’ actions. This could

require paying an agent a lot if the agent contributes very little to the project in their

worst case conjecture. In contrast, in a correlated equilibrium, the principal can use

agents’ common belief about each others’ strategies to instead demonstrate that an

agent’s worst case conjecture will not occur. For example, if Alice is very unproductive

when just Bob is working but not when Bob and Colin are working, then the principal,

rather than paying Alice enough to motivate working when just Bob is working, can

instead pay Colin enough to work if Bob is working and rely on Alice’s awareness that

Colin is paid enough to be working if Bob is working to rule out the unfavorable sce-

nario. Implementing in correlated equilibrium, the principal no longer has to pay Alice

as much because Alice does not entertain the belief that just Bob is working.

To formalize this idea and build Proposition 5, I provide a characterization of the

principal’s problem designing to achieve a unique correlated equilibrium that estab-

lishes a connection to the principal’s problem designing to achieve unique rationalizable

strategies. Specifically, the unique rationalizable strategies problem is equivalent to the

unique correlated equilibrium problem with an additional constraint. This characteriza-

tion of the unique correlated equilibrium problem also demonstrates the key additional

reasoning agents have available in a correlated equilibrium. While an agent can calcu-

late her rationalizable strategies on her own, achieving a unique correlated equilibrium

involves a “group” reasoning process where conjectures about equilibrium play that

might result in a member of the group shirking with positive probability are rejected if

at least one member of the group would not comply with her recommendation to shirk.
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1.1 Related Literature

This paper contributes to the literature on unique implementation by exploring different

solution concepts. Early notable papers in this literature are Segal (1999), Segal (2003),

and Winter (2004). These papers focus on identifying the minimum cost required for

a principal to implement a desired outcome uniquely in Nash equilibrium. Agents’

payoff differences are assumed to be increasing or decreasing as more agents take the

desired action, so Milgrom and Roberts (1990) implies that unique implementation in

Nash equilibrium is equivalent to unique implementation in rationalizable strategies.

The main result in these papers is an extreme “divide-and-conquer” logic where agents

are endogenously paid different strategic rents in order to build up assurance that a

particular action is the unique rationalizable one; if payoff differences are increasing in

others’ actions, hierarchies of bonuses are extreme with one agent per tier. Sakovics and

Steiner (2012) and Halac, Kremer, and Winter (2020) are recent papers that similarly

explore unique implementation but in other applications.

Recent literature on unique implementation and the related concern of adversarial equi-

librium selection has continued to focus on implementation in rationalizable strategies

and added elements of information design. Moriya and Yamashita (2020) allows the

principal to design information about an exogenous binary state that affects productiv-

ity given commonly known bonuses. Halac, Lipnowski, and Rappoport (2021) allows

the principal in the Winter (2004) game to offer bonuses privately; while agents know

their own bonuses and know the production technology, they have uncertainty about

the bonuses other agents face. In follow up work, Halac, Lipnowski, and Rappoport

(2022) relax assumptions about the supermodularity of the base game which possibly

drives a wedge between Nash and rationalizability and focus on unique implementation

in rationalizable strategies. Inostroza and Pavan (2023) consider design of a public

signal in a global games setting where the policy maker evaluates a game according to

an adversarially chosen profile of rationalizable actions. Morris, Oyama, and Takahashi

(2024) study the problem of an information designer who seeks to implement an out-

come as the “smallest” equilibrium in a binary action supermodular base game, where

small gets its meaning from the order on actions that defines supermodularity.

This paper is the first (to the best of my knowledge) to study unique implementation in

correlated equilibrium. Previous work like Neyman (1997) and Ui (2007) demonstrate

that particular classes of games have a unique correlated equilibrium but do not consider

how to design to achieve this. Neyman (1997) shows this for games with convex strategy

sets and smooth strictly concave potentials. Ui (2007) generalizes Neyman’s result to
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project success no project success
work bi − ci −ci

no work bi 0

Table 1: Payoffs for agents

games where fixing other agents’ actions, each player’s payoff function is smooth and

concave in their own action. This paper provides a duality-based characterization of

finite games with a unique correlated equilibrium (Lemma 2), applying no assumptions

on the shape of payoffs, and then considers how to design the game to satisfy this

characterization. Another notable paper studying unique correlated equilibria is Viossat

(2008) which shows that the set of finite games with a unique correlated equilibrium is

open, and like this paper, uses Myerson (1997) and dual reduction to make progress.

2 Model

There are N agents with typical agent i. I denotes the set of all agents, and J denotes

a generic subset of I.

All agents have two actions available to them, working and shirking, denoted w and ϕ

respectively. The action profile influences whether the project is successful. Specifically,

this relationship is captured by a mapping from who is working to the probability of

project success, P : J 7→ [0, 1]. The principal aims to have all her employees work but

has limited ability to monitor their actions. She does not observe the true profile of

actions that agents take but can observe whether the project is successful or not. As

a result, the principal incentivizes agents to work rather than shirk by setting bonuses

that pay out only when project success is achieved. These bonuses are given by the

vector b = (b1, ..., bN). Bonuses are indexed by i so the boss can promise different

bonuses to different workers. Each bi is constrained to be weakly greater than 0.

Given the bonuses the principal sets, agents play a simultaneous, complete information

game. Payoffs of this game are given in Table 1. If an agent works, he pays a utility

cost of ci > 0, regardless of whether the project is successful and what other agents do.

Say a bonus profile implements working in Nash equilibrium (NE) if the bonus profile

induces a game with a unique Nash equilibrium where all agents work2. A bonus profile

b is said to virtually implement working in NE if for all ε > 0, b+ε := (b1+ε, ..., bN +ε)

implements working in NE. I refer to the infimal expected cost of bonuses the principal

2I omit the word “uniquely” just to have a shorter phrase.
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must pay out in order to implement working in NE as UNE. I analogously define (vir-

tually) implements working in correlated equilibrium (CE) and (virtually) implements

working in rationalizable strategies (RS) and the values of analogous problems UCE

and URS, respectively.

This paper compares the values of UNE, UCE and URS. Note that if a profile of

bonuses implements working in rationalizable strategies, then these bonuses necessarily

implement working in correlated equilibrium and Nash equilibrium. Similarly, if a pro-

file of bonuses implements working in correlated equilibrium, then it must implement

working in Nash equilibrium. So, in general, UNE ≤ UCE ≤ URS. I investigate when

these inequalities hold at equality and when these inequalities are strict.

Throughout, I require the following to hold:

Assumption 1. P (·) is strictly increasing so that P (J) > P (J ′) for any J ′ ⊊ J ,

J ⊆ N .

This assumption ensures that there exists some finite bonus profile that uniquely im-

plements working in NE/CE/RS.3

3 Motivating Examples

This section illustrates how the production technology can result in differences in the

cost of implementing in different solution concepts and previews the main results.

Example 1. Anonymous Technology. UNE = UCE = URS.

Consider a firm with three workers. Each worker has a private cost of working 1
2
. The

three workers are interchangeable, so each worker has the same effect on productivity.

The probability of project success as a function of who is working is given by

P (1) =
1

2
P (1, 2) =

2

3

P (∅) = 0 P (2) =
1

2
P (1, 3) =

2

3
P (1, 2, 3) = 1

P (3) =
1

2
P (2, 3) =

2

3

The first person to work has a large marginal contribution to success and can get a lot

done on their own. A second person working increases the number of hands working on

3Specifically, consider the bonus profile where every agent finds working strictly dominant. This
bonus profile necessarily uniquely implements in NE, CE and RS and provides an upper bound on the
cost of the main problem for each solution concept.
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the project, but when the two working team members disagree, they are deadlocked on

decisions. This affects their productivity, so the second team member working increases

the probability of success only by 1
6
. The third person working adds to the number of

hands working and makes ties in decision-making impossible, so the marginal contribu-

tion to success of a third person working is larger at 1
3
. This production technology is

not beyond imagination but already it is beyond the scope of the existing results about

unique implementation since the game that the workers play is not supermodular. It is

easy to see that each agent’s marginal contribution to the probability of project success

is non-monotone in the number of other agents working; it is more laborious but still

straightforward to show that no order on agents’ actions will make this game super-

modular. I have omitted this since it is not interesting.

Let us consider how to implement working as a Nash equilibrium now. Since the

marginal contribution to success of a third agent working is 1/3, every agent must be

promised a bonus of at least 3/2 in order to motivate them to work when the other

two agents are working. If the principal pays all agents this minimum amount, i.e.

b = (3/2, 3/2, 3/2), all agents working is a NE, but there are also three NE where ex-

actly one agent works.

One way to eliminate these undesirable equilibria is to go all the way to making working

uniquely rationalizable for the agents. To achieve this, the principal must pay agents so

that at least one finds working strictly dominant, a second agent finds working strictly

dominant given at least one other person is working, and the third agent finds working

strictly dominant given at least two other people are working. Given P (·) and ci =
1
2
for

all agents, this means that the principal must give two agents bonuses strictly greater

than 3 and the third agent is given a bonus strictly greater than 3/2. It is clear that

the cheapest bonus profile that virtually implements in RS is such that two agents are

paid 3 and the third agent is paid 3/2.

In theory, this bonus profile might be unnecessarily expensive if the principal thinks

agents play a Nash equilibrium rather than just rationalizable strategies, but it turns out

that this bonus profile is also the cheapest that virtually uniquely implements in Nash

equilibrium. Consider again (3/2, 3/2, 3/2). Let us see what minimal adjustments the

principal has to make in order to get rid of the problematic Nash equilibria where only

one agent works. To undermine these NE, the principal can either ensure that working

is not a best response to everyone else shirking or that shirking is a best response to

exactly one person working. Since each agent’s marginal contribution to success is 1/2

when everyone else is shirking and each bonus must be at least 3/2, agents’ bonuses are
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already high enough that working is a best response to everyone else shirking. Instead,

the principal must defeat the undesired Nash equilibria by raising bonuses so that for

any strategy profile where exactly one agent is working, there is a non-working agent

who is paid too much to find shirking is optimal. As a result, at least two agents must

be paid at least 3 so that however we try to pick 1 agent to work and 2 agents to shirk,

one of the designated shirkers has a bonus that is too high for them to find shirking

optimal. These minimal changes result in a bonus profile where 2 agents have a bonus

of 3 and 1 agent has a bonus of 3/2, the same bonus profile that most cheaply virtually

implements in RS, so the principal does not have to adjust bonuses further to virtually

implement in NE. ⋄

Theorem 1 builds on and generalizes the arguments used in Example 1. When P (·) is
anonymous, fixing a bonus profile, we can traverse through undesired candidate Nash

equilibria in such a way that an action profile fails to be a Nash equilibrium only if a

designated shirker would prefer working to shirking rather than a designated worker

preferring shirking to working. This establishes lower bounds on individuals’ bonuses;

it turns out that these lower bounds are already so high that they virtually implement

in RS.

Next, I consider a slight modification of the technology in the previous example:

Example 2. Non-anonymous Technology. UNE < UCE < URS.

All agents have the same cost of working as in Example 1, but agent 2 has distinct skills

from 1 and 3. The probability of project success as a function of who is working is given

by

P (1) =
1

2
P (1, 2) =

3

4

P (∅) = 0 P (2) =
1

6
P (1, 3) =

2

3
P (1, 2, 3) = 1

P (3) =
1

2
P (2, 3) =

3

4

While before all agents were in some sense equal (and so prone to decision-making

deadlocks without an odd number involved in the project), agent 2 is now a manager:

unproductive on her own but very productive with an underling. In fact, an underling

working with the manager avoids the decision deadlock encountered by two underlings

working together, so P (1, 2) = P (2, 3) > P (1, 3).

Consider the bonus profile (2 + ε, 2 + ε, 2 + ε) for small ε > 0. There is a unique Nash

equilibrium where all agents work at this bonus profile, so UNE is at most 6.
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To see this, let σi be the probability agent i plays w. Suppose there exists a Nash

equilibrium where 1 strictly prefers playing ϕ over w. Then, σ1 = 0. Consider the

two player game between 2 and 3 where they take as given that 1 never works. 3’s

marginal contribution to success is at least 1
4
regardless of whether 2 is working. Given

the bonus profile, 3 finds working uniquely rationalizable since 1 is not working. Given

that 3 is working and 1 is not working, 2 strictly prefers to work. Since σ2 = σ3 = 1,

1 actually strictly prefers to work over not working, so there is no Nash equilibrium

where 1 strictly prefers not working over working.

Now, suppose there exists a Nash equilibrium where 1 is indifferent between working

and not working. 1’s indifference condition is equivalent to the following relationship

between other players’ strategies:

1

12
σ2 −

1

3
σ3 +

1

2
=

1

4 + 2ε

I can bound σ3 from below:

σ3 ≥
3

4
+

3

12
σ2 ≥

3

4

Now, let’s consider 2’s payoff difference between working and not working:

1

12
b2σ1 +

1

12
b2σ3 +

1

6
b2 − c2

If σ1 and σ3 are such that

1

12
(σ1 + σ3) +

1

6
≥ 1

4

then 2 strictly prefers to work over not working. The above inequality is equivalent to

σ1 + σ3 ≥ 1. So, if σ3 = 1, 2 strictly prefers to work, and given that both 2 and 3

are working, 1 will strictly prefer to work. If 1 is indifferent between working and not

working, it must be that σ3 < 1.

Observe that 1 and 3 are symmetric so that their indexes can be swapped in the expres-

sion for 1’s payoff difference between working and not working. Identical arguments

will establish that for 3 to be indifferent between working and not working, σ1 ≥ 3
4
.

So σ1 + σ3 ≥ 9
4
, and 2 must strictly prefer to work over not working. Given that 2 is

working, 1’s marginal contribution to success is at least 1
4
, so 1 strictly prefers to work.

I conclude that there is no Nash equilibrium where 1 is indifferent between working and

10



not working.

Finally, suppose there exists a Nash equilibrium where 1 strictly prefers w over ϕ. Then,

σ1 = 1. 2’s marginal contribution to success is guaranteed to be at least 1
4
, so σ2 = 1.

Finally, since 1 and 2 are working with probability 1, 3 must be working with proba-

bility 1. Working is indeed a best response for 1 given others’ strategies, so this is the

only Nash equilibrium in the game. UNE is at most 6.

In contrast, URS is 7. The cheapest bonus profile that virtually implements in ratio-

nalizable strategies is (2, 3, 2) which corresponds to 2 eliminating not work as rational-

izable, then 1 eliminating, and finally 3 eliminating. UCE lies strictly between UNE

and URS at approximately 6.1. ⋄

I will revisit this example in Section 6 of this paper when I present Proposition 5 which

provides a sufficient condition for a game to have a gap between implementing in unique

correlated equilibrium and unique rationalizable strategies.

4 Anonymous Production

In this section, I restrict attention to games where P (·) satisfies the following definition:

Definition 1. P (·) is anonymous if P (J) = P (J ′) for all J, J ′ ⊆ N where |J | = |J ′|.

P (·) is anonymous if the probability of achieving project success does not directly

depend on the identities of the agents working. As a result, I write P (k) to denote the

probability of success induced by any set of k agents working. Anonymity is a particular

form of symmetry restriction on the productivities of agents; note that no restriction is

put on agents’ private costs of working.

Theorem 1. If P (·) is anonymous, UNE = UCE = URS.

I will show the result by demonstrating that for any profile of bonuses b that imple-

ments in unique Nash equilibrium, there is a profile of bonuses b̂ where bi ≥ b̂i for

all i, and b̂ virtually implements in unique rationalizable strategies. This shows that

URS ≤ UNE. Since UNE ≤ UCE ≤ URS, the inequalities must hold at equality.

Most of the work in the proof is constructing the appropriate b̂. To do so, I present

an algorithm that takes in any bonus profile, starts with the conjecture that no agents

work, and then progressively switches agents from not working to working, terminating
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when it reaches a Nash equilibrium. When fed a bonus profile b that uniquely imple-

ments working in Nash equilibrium, the algorithm ends with the unique equilibrium. Of

course, this is not surprising, but this outcome implies useful lower bounds on agents’

bonuses that will produce b̂.

To get a sense of how the algorithm’s outcome establishes the bounds, consider a strat-

egy profile where agents in J work and agents in I − J do not work. This strategy

profile could fail to be a Nash equilibrium for two reasons: either some agent in J does

not find it optimal to work (0 > P (|J |)−P (|J |−1)bi−ci) or some agent in I−J would

rather work over not working (0 < P (|J | + 1) − P (|J |)bi − ci). The algorithm rules

out the first of these alternatives by switching agents from not working to working in a

particular order which guarantees that an agent once designated a worker will always

continue to prefer working over shirking at all action profiles the algorithm arrives at.

Now, let’s see the algorithm. It takes in any profile of bonuses, b, not necessarily one

that implements working in Nash equilibrium, and iteratively builds a set of agents Ĵ

so that there is a pure strategy Nash equilibrium where Ĵ works and those left out do

not:

1. Initialize k = 1 and set J0 = ∅.

2. Define

Jk =

Jk−1 if ∀i /∈ Jk−1, ci
bi
> P (k)− P (k − 1)

Jk−1 ∪ i otherwise, given i ∈ argminj /∈Jk−1
cj
bj

3. If Jk = Jk−1, set J = Jk and exit. Otherwise, increment k and return to step 2.

Note that agents are added to Ĵ starting from the smallest ci/bi and progressing to

larger ci/bi
4

Agents in Ĵ working while agents not in Ĵ shirking is a pure strategy Nash equilibrium.5

The stopping condition of the algorithm ensures that all agents not in Ĵ weakly prefer

shirking to working. To see that all agents added to Ĵ prefer working to shirking, let

4 ci
bi

is an intuitive measure of how motivated agents are to work over shirk as it is the minimum
contribution to success such that i weakly prefers w to ϕ. Agents with a lower ci/bi can be interpreted
as being more highly motivated to work since they will work over shirk even when their marginal
contribution to success is relatively low.

5This algorithm bears some resemblance to a standard algorithm that constructs a pure strategy
Nash equilibrium in a generalized ordinal potential game. See Monderer and Shapley (1996). The
team production game is a weighted potential game.
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|Ĵ | = k, and index agents in the order that they are added to Ĵ , if they are added.

Agents that are not added to Ĵ are indexed something strictly greater than k. Consider

k, the last agent added to Ĵ . Because k is an agent with the minimum ci/bi among agents

in I − Jk−1, it must be that ck
bk

≤ P (k)−P (k− 1) ⇐⇒
(
P (k)−P (k− 1)

)
bk − ck ≥ 0.

Any agent i < k was added to Ĵ before k and so ci
bi
≤ ck

bk
. This implies that

(
P (k)− P (k − 1)

)
bi − ci ≥ 0 ∀i < k

The anonymity of the production function and the special order in which agents are

added are used in this last observation. As the algorithm adds agents to the conjec-

tured worker set, agents that have already been added see their marginal contribution to

project success change. In principle, this might jeopardize their preference for working

over shirking, but since the production function is anonymous, the marginal contri-

bution to success of the last agent added is the same as that of agents added earlier.

Because the algorithm adds agents starting from lowest ci/bi to larger ci/bi, adding the

last agent to the worker set implies agents added earlier continue to prefer work to shirk.

I have shown the following lemma:

Lemma 1. If b induces a unique NE where all agents work, then Ĵ = I.

Now, suppose b uniquely implements in Nash equilibrium. Given lemma 1, I can index

all agents in the order they are eventually added to Ĵ . An important implication of

lemma 1 is that

ci
bi

≤ P (k)− P (k − 1) ∀i ≤ k, ∀1 ≤ k ≤ N

In words, the lowest k + 1 ci/bi are at most P (k + 1) − P (k) for all k = 0, ..., N − 1.

Depending on the shape of P , not all these upper bounds are necessarily relevant;

some might imply others hold. The following process identifies the most relevant upper

bounds:

1. Start with n = 1. Define kn := argmin1≤k≤NP (k)− P (k − 1).

2. Increment n by 1.

3. If kn−1 ̸= N , then define kn = argminkn−1<k≤NP (k)− P (k − 1).

4. If kn−1 = N , then exit.

5. Return to step 3.
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To understand what this process does, consider k1. k1 is the size of the worker set where

the marginal contribution to success of those who are working is smallest, so for i ≤ k1,

ci/bi ≤ P (k1)−P (k1− 1) implies ci/bi ≤ P (k)−P (k− 1) for all k ≤ k1. The argument

that kn is the binding upper bound for i ≤ kn is similar. Denote the maximum n

reached in the iterative construction of kn as n̄. When the marginal contribution to

success is increasing as more agents work, then kn = n with n̄ = N . When the marginal

contribution to success is decreasing as more agents work, then n̄ = 1 with k1 = N . I

can summarize the relevant upper bounds as:

s̄(i) =



P (k1 + 1)− P (k1) if i ≤ k1 + 1

P (k2 + 1)− P (k2) if k1 + 1 < i ≤ k2 + 1

...

P (kn + 1)− P (kn) if kn−1 + 1 < i ≤ kn + 1

...

P (kn̄ + 1)− P (kn̄) if kn̄−1 + 1 < i ≤ kn̄ + 1

Given the upper bounds on ci/bi, I can identify our desired lower bound profile of

bonuses, b̂:

ci
bi

≤ s̄(i)

⇐⇒ b̂i :=
ci
s̄(i)

≤ bi

The final step to proving Theorem 1 is observing that b̂ virtually implements in URS.

To show this, consider a bonus profile where each agent i’s bonus is a ε > 0 above b̂i.

Denote this bonus profile by b̂ε where b̂εi = b̂i + ε for ε > 0. Using the definition of k1,

I can observe that for all i ≤ k1,(
P (k)− P (k − 1)

)
b̂εi − ci ≥

(
P (k1 + 1)− P (k1)

)
b̂εi − ci > 0 ∀1 ≤ k ≤ N

so agents 1, ..., k1 find working strictly dominant. Now, suppose that agents 1, ..., kn are

working. Observe that for all kn < i ≤ kn+1,(
P (k)− P (k − 1)

)
b̂εi − ci ≥

(
P (kn)− P (kn − 1)

)
b̂εi − ci > 0 ∀kn ≤ k ≤ N

so agents kn+1, ..., kn+1 find working strictly dominant given that 1, ..., kn are working.

This completes the proof.
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The lower bound profile of bonuses b̂ has a particular structure:

Definition 2. A bonus profile b is tiered according to strategic bottlenecks (TASB)

if b has k1 agents such that ci
bi

= P (k1) − P (k1 − 1), k2 − k1 agents such that ci
bi

=

P (k2)− P (k2 − 1), ..., and kn̄ − kn̄−1 agents such that ci
bi
= P (kn̄)− P (kn̄ − 1).

Recall the final step of proving Theorem 1. That b̂ is TASB is enough to make the

argument b̂ virtually implements in URS. The next corollary summarizes this:

Corollary 1. Suppose b is tiered according to strategic bottlenecks. Then, b virtually

implements in URS.

So, the value of the UNE = UCE = URS problem in the anonymous P (·) case is the

value of the cheapest TASB b. This b can be easily identified:

Proposition 1. When P (·) is anonymous, the value of the UNE = UCE = URS

problem is given by b̂∗ where

b̂∗ =



ci
P (k1+1)−P (k1)

if 1 ≤ i ≤ k1

...

ci
P (kn+1)−P (kn)

if kn−1 < i ≤ kn

...

ci
P (kn̄+1)−P (kn̄)

if kn̄−1 < i ≤ kn̄

and agents are indexed so that c1 ≤ c2... ≤ cN .

Finding the minimum cost TASB b is essentially a two-sided matching problem. The

strategic bottlenecks define “strategic roles”: k1 agents must be paid enough to motivate

working when k1−1 other agents are working, an additional k2−k1 agents must be paid

enough to motivate working when k2− 1 other agents are working, and so on. The role

of being motivated to work when kn − 1 other agents are working can be thought of as

having an associated type 1/(P (k1)− P (k1 − 1)). Each agent i can be associated with

his cost of working ci. When agent i is matched to the strategic role of working when

kn−1 other agents work, the principal will pay them a bonus of ci/(P (kn)−P (kn−1)).

The mapping from agent and role types to required bonus is supermodular, so as shown

in Becker (1973), to minimize the total cost of bonuses, lower cost agents should be

matched to strategic roles associated with smaller marginal contributions to success.
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5 Aligned Marginal Contributions

5.1 Preliminaries

In this section, I explore what drives the equivalence between UCE and URS in the

case of anonymous production. I focus on the following restriction on P (·):

Definition 3. P (·) satisfies aligned marginal contributions if there exists a ranking

⪰ over worker sets J ⊊ N where J ⪰ J ′ ⇐⇒ for all i /∈ J, J ′, P (J ∪ i) − P (J) ≥
P (J ′ ∪ i)− P (J ′).

Remark 1. If P (·) is anonymous, P (·) satisfies aligned marginal contributions.

Given P (·) is anonymous, for any worker set J ⊊ N , every i /∈ J has the same marginal

contribution to success:

P (J ∪ i)− P (J) = ∆J ∀i /∈ J (Sym)

In fact, P (J ∪ i)−P (J) does not directly depend on J but |J | since P (·) is anonymous,

but the above observation is enough to demonstrate that P (·) satisfies aligned marginal

contributions. The ranking on J ⊊ N required by the definition can be produced from

the natural order on ∆J so that J ⪰ J ′ if and only if ∆J ≥ ∆J ′ .

Remark 2. If N = 2, then P (·) satisfies aligned marginal contributions.

Note that a two player game has 3 worker sets: (1) no one working (2) exactly agent

1 working (3) exactly agent 2 working. Intuitively, producing the ranking required for

aligned marginal contributions is easy because there does not exist two different worker

sets J and J ′ where both 1 and 2 are not in J or J ′. 1 and 2 cannot “disagree” on

which worker sets they are relatively productive with.

To show the claim, let’s partition the set of all P (·) functions into 4 cases. Table 2

verifies that it is possible to produce the desired ranking over worker sets for each case.

Note that this remark also demonstrates that P (·) satisfying aligned marginal contribu-

tions does not imply that P (·) is anonymous or even symmetric in the sense of satisfying

Sym for every J ⊊ N .

Aligned marginal contributions is a sufficient condition under which UCE and URS

coincide:

Theorem 2. If P (·) satisfies aligned marginal contributions, UCE = URS.
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Case Verifying Ranking
P (1, 2)− P (2) ≥ P (1)− P (∅) 2 ⪰ 1 ⪰ ∅
P (1, 2)− P (1) ≥ P (2)− P (∅)
P (1, 2)− P (2) ≥ P (1)− P (∅) 2 ⪰ ∅ ⪰ 1
P (1, 2)− P (1) < P (2)− P (∅)
P (1, 2)− P (2) < P (1)− P (∅) 1 ⪰ ∅ ⪰ 2
P (1, 2)− P (1) ≥ P (2)− P (∅)
P (1, 2)− P (2) < P (1)− P (∅) 1 ⪰ ∅ ⪰ 2
P (1, 2)− P (1) ≥ P (2)− P (∅)
P (1, 2)− P (2) < P (1)− P (∅) ∅ ⪰ 2 ⪰ 1
P (1, 2)− P (1) < P (2)− P (∅)

Table 2: Every two player game satisfies aligned marginal contributions.

5.2 On UCE in Finite Games

In this subsection, I study when a finite game has a unique correlated equilibrium that

puts probability one on a particular profile of actions. I then apply this to the team

production game.

Consider a finite game with N agents and typical agent i. Si is the finite set of actions

available to each i with typical element si ∈ Si. ui(si, s−i) is the utility i gets from this

action profile. µ ∈ ∆S is a distribution over action profiles.

Fix a profile of actions s̄ ∈ S. Distribution µ such that µ(s̄) = 1 is a correlated

equilibrium of the game if the following constraints are satisfied:∑
s

µ(s) = 1

∑
s−i

µ(s)

(
ui(si, s−i)− ui(s̃i, s−i)

)
≥ 0 ∀si, s̃i ∈ Si,∀i

Furthermore, µ is the unique correlated equilibrium if there is no correlated equilibrium

that puts positive probability on any action profile s ̸= s̄. In other words, the following

linear system is infeasible:

∑
s−i

µ(s)

(
ui(si, s−i)− ui(s̃i, s−i)

)
≥ 0 ∀si, s̃i ∈ Si,∀i

µ(s) ≥ 0 ∀s ∈ S∑
s̸=s̄

µ(s) > 0
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Using Motzkin’s Transposition Theorem (see Tucker (1957) Corollary 2A), the infeasi-

bility of the above system is equivalent to the feasibility of the following linear system:

∑
i,s̃i

αi(s̃i|si)
(
ui(si, s−i)− ui(s̃i, s−i)

)
+ γ(s) + β = 0 ∀s ̸= s̄

∑
i,s̃i

αi(s̃i|s̄i)
(
ui(s̄i, s̄−i)− ui(s̃i, s̄−i)

)
+ γ(s̄) = 0

αi(s̃i|si) ≥ 0 ∀i, ∀s̃i, si ∈ Si

γ(s) ≥ 0 ∀s ∈ S

β > 0

Rearranging this linear system, normalizing αi, and dispensing with γ, we can arrive

at:

Lemma 2. µ̄ ∈ ∆S such that µ̄(s̄) = 1 is the unique CE if and only if ∃ α ≥ 0 such

that:

1 =
∑
s̃i

αi(s̃i|si) ∀i, ∀si∑
i

∑
s̃i

αi(s̃i|si)
(
ui(s̃i, s−i)− ui(s)) > 0 ∀s ̸= s̄∑

i

∑
s̃i

αi(s̃i|s̄i)
(
ui(s̃i, s̄−i)− ui(s̄)

)
= 0

Using other results in the literature, it is possible to learn even more about the α

that satisfies the linear system in lemma 2. Myerson (1997) tells us we can build an

auxiliary game from the original game, fixing the multipliers on obedience constraints

associated with a given correlated equilibrium. To construct this game, note that since∑
s̃i
αi(s̃i|si) = 1, the multipliers on i’s obedience constraints αi define a Markov chain

where Si is the state space. αi(s̃i|si) can be interpreted as the probability the process

transitions to s̃i from state si. In the auxiliary game termed the “dual reduction,” each

player i has finite pure strategies that correspond to certain stationary distributions

of αi.
6 Mixed strategies in the dual reduction are convex combinations of stationary

distributions of αi and so also stationary with respect to αi. Payoffs are defined from

the original game payoffs in the natural way. Since the dual reduction is a finite game,

it has a correlated equilibrium. Theorem 1 of Myerson (1997) establishes that a corre-

lated equilibrium of the dual reduction is also a correlated equilibrium of the original

6It is clear that the dual reduction is constructed using the dual variables associated with the
obedience constraints of a correlated equilibrium. It is a “reduction” because players have weakly
fewer pure strategies in the dual reduction than in the original game.
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game.

When a game has a unique pure strategy correlated equilibrium µ̄ with multipliers α ≥ 0

on the obedience constraints, the associated dual reduction also has a unique correlated

equilibrium. Then, for each i, playing s̄i with probability 1 must be a stationary

distribution for αi, so αi(s̄i|s̄i) = 1. I record the sum of these observations in the

following proposition:

Proposition 2. µ̄ ∈ ∆S such that µ̄(s̄) = 1 is the unique CE if and only if ∃ α ≥ 0

such that:

1 =
∑
s̃i

αi(s̃i|si) ∀i, ∀si∑
i

∑
s̃i

αi(s̃i|si)
(
ui(s̃i, s−i)− ui(s)) > 0 ∀s ̸= s̄

αi(s̄i|s̄i) = 1 ∀i

5.2.1 UCE in the Team Production Game

Now, I apply Proposition 2 to the team production game, taking s̄ to be the action

profile where all agents work:

inf
(bi)i,α≥0

∑
i

P (N)bi (UCE)

s.t. 1 = αi(w|ϕ) + αi(ϕ|ϕ) ∀i (1)∑
i/∈J

αi(w|ϕ)
(
P (J ∪ i)bi − ci − P (J)bi

)
> 0 ∀J ⊊ I (2)

Because specifying αi(w|ϕ) pins down αi(ϕ|ϕ), I only consider how to choose αi(w|ϕ)
and write αi(w|ϕ) as αi from here on.

5.3 Proof of Theorem 2

To show Theorem 2, I will show that if P (·) satisfies aligned marginal contributions,

then any bonus profile that uniquely implements in correlated equilibrium also uniquely

implements in rationalizable strategies. Since UCE ≤ URS, this is enough to show

that UCE = URS.

I start with an implication of UCE:
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Lemma 3. Suppose b is UCE. For all J ⊊ I, there exists some i /∈ J for whom

P (J ∪ i)bi − ci − P (J)bi > 0

If such an i /∈ J did not exist, it would not be possible to produce α ≥ 0 and satisfy

the constraints 2.

Let b implement in unique correlated equilibrium. Aligned marginal contributions im-

plies that there is a complete ranking over all worker sets J ⊊ I. So, there is a bottom

ranked worker set J1 such that for all J ̸= J1, J ⪰ J1. By lemma 3, there must be

an agent i1 /∈ J1 such that P (J1 ∪ i1)bi1 − ci1 − P (J1)bi1 > 0. By the definition of

aligned marginal contributions, for all other worker sets J ̸= J1 s.t. i1 /∈ J , i1 has a

greater marginal contribution to success when J is working than when J1 are working,

i.e. P (J ∪ i1) − P (J) ≥ P (J1 ∪ i1) − P (J1). Since P (J1 ∪ i1)bi1 − ci1 − P (J1)bi1 > 0,

working is i1’s uniquely rationalizable action.

Now, suppose agents i1, ..., ik have eliminated not working as rationalizable. Let’s re-

strict our attention to the ranking over worker sets that contain i1, ..., ik. Again, there

is a Jk+1 that is bottom ranked among these sets. By lemma 3, there must be an agent

ik+1 /∈ Jk+1 such that P (Jk+1 ∪ ik+1)bik+1 − cik+1 −P (Jk+1)bik+1 > 0. Since agent ik+1’s

smallest marginal contribution to success given i1, ..., ik are working is at worker set

Jk+1, ik+1 eliminates not working as rationalizable given that i1, ..., ik are working.

Repeatedly applying this argument produces a relabeling of all agents as i1, ..., iN where

the superscript denotes the order in which they eliminated not working as rationaliz-

able. In other words, b implements in URS as well.

While aligned marginal contributions implies UCE = URS, the next example demon-

strates that it does not imply UNE = UCE.

Example 3. Satisfies aligned marginal contributions but UNE < UCE =

URS

Consider a three person game where c1 = 2, c2 = c3 = 1 and the probability of project
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success is given by:

P (1) =
1

4
P (1, 2) =

7

16

P (∅) = 0 P (2) =
3

8
P (1, 3) =

7

16
P (1, 2, 3) = 1

P (3) =
2

8
P (2, 3) =

5

8

The following ranking verifies that the game satisfies aligned marginal contributions:

{2, 3} ⪰ {1, 2} ⪰ {1, 3} ⪰ ∅ ⪰ {3} ⪰ {2} ⪰ {1}

Theorem 2 tells us that UCE = URS. To calculate UCE = URS, it is easier to

focus on URS. The cheapest profile of bonuses that virtually implements in rational-

izability is (16
3
, 8
3
, 16

3
) and corresponds to 3 eliminating shirking as rationalizable, then

2 eliminating, and then 1 eliminating. The value of UCE = URS is thus 131
3
. On the

other hand, UNE is weakly less than 12. To show this, I consider the bonus profile

(16
3
+ ε, 8

3
+ ε, 4+ ε) where ε > 0. I will show that for small enough ε, there is a unique

Nash equilibrium where all agents work with probability 1.

To see this, first note that whether an agent prefers to work or shirk depends only on

their marginal contribution to success. Given these values for the bonuses, let us cal-

culate the minimum marginal contribution to success at which each agent will weakly

prefer working to shirking. For 1, the minimal marginal contribution is 6
16+ε

. For 2, it

is 3
8+ε

, and for 3, it is 1
4+ε

.

Let σi denote the probability that agent i plays work in a Nash equilibrium. Observe

that if σ1 = 0, then 2’s marginal contribution to success is at least 3
8
, so σ2 must be 1.

Similarly, 3’s marginal contribution to success is at least 1
4
, so σ3 must be 1. If 2 and 3

are working with probability 1, then 1’s marginal contribution to success is 3
8
, and he

must also be working with probability 1. Contradiction. There is no Nash equilibrium

where 1 plays work with 0 probability.

Since 1 must be playing work with positive probability in any Nash equilibrium, this

implies that 2 and 3 must be playing work with relatively high probability. Specifically,

it must be that σ2σ3 > 1
2
. If not, 1’s marginal contribution to project success can be

21



bounded from above:

(1− σ2)(1− σ3)
1

4
+ (1− σ2)σ3

3

16
+ σ2(1− σ2)

1

16︸ ︷︷ ︸
≤(1−σ2σ3)

1
4

+σ2σ3
3

8

≤ (1− σ2σ3)
1

4
+ σ2σ3

3

8

≤ 5

16
<

6

16 + 3ε

The last strict inequality holds for small enough ε. Given this little lemma, it is clear

that both 2 and 3 must be playing work with positive probability in any Nash equilib-

rium.

Now, suppose 2 mixes between working and not working in a Nash equilibrium. 2’s

indifference between the two actions implies that his marginal contribution to success

is

(1− σ1)(1− σ3)
6

16
+ σ1(1− σ3)

3

16
+ (1− σ1)σ3

6

16
+ σ1σ2

9

16

=
3

8
− 3

16
σ1 +

6

16
σ1σ3 =

3

8 + 3ε

I can then bound the probability that 3 plays work from above:

σ3 ≤
1

2

This implies that σ2σ3 ≤ 1
2
if 2 mixes between working and not working, so it cannot

be that 2 is mixing. Similarly, if 3 is mixing between working and not working, his

indifference implies:

(1− σ2)(1− σ1)
4

16
+ σ1(1− σ2)

3

16
+ σ2(1− σ1)

4

16
+ σ1σ2

9

16

=
4

16
− 1

16
σ1 +

6

16
σ1σ2 =

1

4 + ε

and it is again possible to bound the probability that 2 plays work:

σ2 ≤
1

6

Again, this implies 1 strictly prefers to shirk over work, so it cannot be that 3 mixes be-

tween working and not working either. I conclude that σ2 = σ3 = 1. Given 2 and 3 are

playing work with probability 1, 1’s best response is to work with probability 1. This

is the unique Nash equilibrium when ε is sufficiently small, so UNE ≤ 12 and there
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is a strict gap between the cost of implementing in unique Nash compared to the cost

of implementing in unique correlated equilibrium and unique rationalizable strategies. ⋄

Aligned marginal contributions is not necessary for UCE to equal URS but makes stat-

ing the result and proving it easy by asserting the existence of a complete ranking over

worker sets. With a complete ranking, given that agents i1, ..., ik find working uniquely

rationalizable, there necessarily exists a worker set where all agents left out of the set

have minimal marginal contributions to productivity. The next example demonstrates

that it is also possible to satisfy this requirement without satisfying aligned marginal

contributions:

Example 4. Sufficient Alignment Implies UCE = URS but UNE < UCE

Consider a three person game where c1 = c2 = c3 = 1
2
where the probability of project

success is given by the following:

P (1) =
1

3
P (1, 2) =

2

3

P (∅) = 0 P (2) =
7

24
P (1, 3) =

1

2
P (1, 2, 3) = 1

P (3) =
7

24
P (2, 3) =

1

2

Equip agents with bonuses (3
2
+ ε, 3

2
+ ε, 3

2
+ ε) where ε > 0. When ε is very small,

agents are paid just enough for each to strictly prefer working over not working when

their marginal contribution to success is 1
3
. This game has a unique Nash equilibrium

where all agents work with probability 1.

To establish this, consider whether agent 3 prefers working to not working in a Nash

equilibrium of the game. Suppose 3 strictly prefers to shirk over working in equilib-

rium. Since 3 is not working, 1 strictly prefers working to shirking since his marginal

contribution to success is guaranteed to be at least P (1) − P (∅) = 1/3. Given that

1 is working with probability 1, 2 strictly prefers to work over not working since his

marginal contribution to success is then 1/3. Since 1 and 2 are both working, 3 strictly

prefers to work since his marginal contribution to success is then 1/3, so there is no

Nash equilibrium where 3 strictly prefers shirking to working.

Consider what happens when 3 weakly prefers working to shirking in a Nash equilibrium.

Then, it cannot be that 1 is shirking with probability 1 since this guarantees that 3’s

marginal contribution to success is at most 7
24

< 1
3
, and 3 would strictly prefer to shirk

23



over working. Let’s see that 1 cannot be mixing between working and not working in

equilibrium. If 1 is mixing, 1 is indifferent between working and not working. Using

this indifference condition, it is possible to create an upper bound on σ2:

σ2 ≤
3σ3

1 + 6σ3

≤ 3

7

where the second inequality follows by observing that the RHS of the first inequality

is strictly increasing in σ3 and evaluating the RHS at σ3 = 1. We can now bound 3’s

payoff difference from switching to work from shirk:

(1− σ1)

[
(1− σ2)

7

24
b3 + σ2

5

24
b3

]
︸ ︷︷ ︸

≤ 7
24

b3

+σ1

[
(1− σ2)

1

6
b3 + σ2

8

24
b3

]
︸ ︷︷ ︸

≤ 5
21

b3

−c3 ≤
7

24
b3 − c3 < 0

So, in a Nash equilibrium, it cannot be that 3 prefers to work over shirking while 1 is

mixing between working and shirking.

Finally, suppose that 3 prefers to work over shirking in a Nash equilibrium and 1 is

playing work with probability 1. Then, 2’s marginal contribution to success is at least

1/3, so 2 is also working with probability 1. 3 is also working with probability 1. This

is the only Nash equilibrium.

The above argument establishes that UNE ≤ 4.5. URS is approximately 5.23, given by

the cost of (12
9
, 12

5
, 3
2
). This bonus profile is associated with first 2 eliminating not work-

ing as rationalizable, followed by 1 eliminating, and then 3 eliminating. In this game,

UCE actually coincides with URS. To see this, notice that both 1 and 2’s marginal

contributions to project success are smallest when only 3 is working. In other words,

both 1 and 2 are least marginally productive when just 3 is working. By Lemma 3, if

b implements in UCE, then 1 or 2 must be motivated to work when only 3 is working.

In other words, 1 or 2 must find working strictly dominant.

Let’s say 1 finds working dominant. 2 and 3 are now playing a two-player game since 1

must be working. By Remark 2, P (·), restricted to worker sets that include 1, satisfies

aligned marginal contributions. So, if b1 makes 1 find working strictly dominant, (b2, b3)

induces 2 and 3 to find working uniquely rationalizable. A similar argument can be

made if b2 makes working strictly dominant for 2. As a result, UCE = URS in this

game. ⋄

The example above generalizes the logic in the proof of Theorem 2. P (·) fails aligned
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marginal contributions: agent 3 is less productive when 1 is working than when no

one is working but agent 2 is more productive when 1 is working than when no one

is working. Additionally, agent 3 is less productive when 2 is working than when no

one is working, but agent 1 is more productive when 2 is working than when no one is

working. Once we demonstrate that either 1 or 2 must find working strictly dominant,

that 3 is relatively productive at ∅ while 1 and 2 both are relatively unproductive at ∅
does not matter. No one working cannot occur in equilibrium anyways.

6 Sufficient Condition for Gap between UCE and

URS

Given Theorem 2, a strict gap between the UCE and URS problems implies agents dif-

fer in which worker sets they are relatively more productive with. This section further

explores what drives a strict gap by providing a different characterization of the UCE

problem which can be used to more easily compare the UCE and URS problems. The

main result of the section, Proposition 5, uses this characterization to give a sufficient

condition on the base game for the existence of a strict gap between the UCE and URS

problems.

Let P denote a partition of the agents {I1, ..., IK}. The cells of the partition are ordered;

this is reflected in their indexing. Fix a vector (αi) ≫ 0. I define a cell level bonus

design problem:

VP,k(α) := min
(bi)i∈Ik

∑
i∈Kk

bi (3)

s.t.
∑

i∈Ik−J

αi

(
(P (J ∪ i)− P (J))bi − ci

)
≥ 0 ∀J ⊊ N,∪k−1

l=1 Il ⊆ J

(4)

This problem optimizes the choice of bonuses for just the agents in the kth cell, fixing

(αi)i∈Ik as the multipliers for agents in Ik. The cell level problem has constraints that

differ from those in 2 in two ways. First, constraints correspond only to sets J that

contain all agents in cells that precede Ik. It is as if agents in cells that precede Ik

are presumed to be working from the perspective of agents in cell Ik. Second, each J

constraint only contains incentive terms from agents in the kth cell. The incentives of

agents in cells that succeed Ik are irrelevant for the kth cell problem.

Now, suppose a bonus profile b uniquely implements working in rationalizable strategies.
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b implies an order in which agents eliminate not working as rationalizable. Denote it by

i1, ..., iN where i1 eliminates first. This order on agents naturally maps to an ordered

partition P of agents where each cell is a singleton and Ik = {ik}. Taking as given that

i1, ..., ik−1 work, ik finds working strictly dominant, so for any αik > 0, 4 holds strictly

and bik is feasible for the Ik cell problem for any α ≫ 0. Given this observation, it is

clear that

min
P∈O,α=(1,...,1)

∑
k=1

VP,k(α) ≤
∑
i∈I

bi

where O is the set of ordered partitions such that each cell of the partition is a singleton.

From here, it is straightforward to show that URS is given by the optimal choice of

ordered singleton partition:

Proposition 3.

URS = min
P∈O,α=(1,...,1)

N∑
k=1

VP,k(α) (URS-P)

where O is the set of ordered partitions where each cell of the partition is a singleton.

Like URS, UCE is also given by the sum of cell problems induced by a choice of

ordered partition and α ≫ 0. Unlike URS, UCE does not restrict attention to ordered

partitions with singleton cells:

Proposition 4.

UCE = min
P,α≫0

∑
k

VP,k(α) (UCE-P)

To understand the non-singleton cells, fix a bonus profile b that virtually implements

in a unique correlated equilibrium. The proof of Proposition 4 shows that b can be

mapped to an ordered partition and α ≫ 0 such that 4 hold strictly for each cell

problem. Consider a single cell of the partition, Ik. Using Motzkin’s transposition

theorem, the existence of α ≫ 0 that satisfy the inequalities 4 is equivalent to the non-

existence of a distribution β over worker sets J ⊊ I s.t. ∪k−1
l=1 Il ⊂ J and the following

inequalities hold:

∑
J s.t. i/∈J,∪k−1

l=1 Il⊂J⊊N

β(J)

(
(P (J ∪ i)− P (J))bi − ci

)
≤ 0 ∀i ∈ Ik

with strictness for at least one i ∈ Ik. In other words, for every distribution β which

has support only on action profiles where agents in ∪k−1
l=1 Il are working, either there
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exists i ∈ Ik such that

∑
J s.t. i/∈J,∪k−1

l=1 Il⊂J⊊N

β(J)

(
(P (J ∪ i)− P (J))bi − ci

)
> 0 (D)

or for all i ∈ Ik, the inequality holds at equality. Suppose β involves agent i ∈ Ik

shirking with positive probability. Then, if all agents’ bonuses were slightly increased,

at the perturbed bonuses, D must hold for agent i.

Consider the special case when Ik is a singleton cell consisting of agent i. When in-

dividuals’ bonuses are perturbed upwards, for every β, the condition D holds for i, so

given that all agents in I1, ..., Ik−1 are working, there is no belief over whether agents in

I −∪k−1
l=1 Il are working such that i’s best response is shirking. In other words, shirking

is not rationalizable for i.7 Now, consider the case when Ik is not a singleton. When

bonuses are perturbed upwards, for every distribution β where at least one worker in

Ik is shirking with positive probability, D says that there is at least one agent i ∈ Ik

that, when recommended to shirk according to β, would strictly prefer to disobey their

recommendation and work instead. So, only all agents in Ik working with probability

1 can be part of the outcome of a correlated equilibrium.

As gestured at in the introduction, the difference between rationalizability and corre-

lated equilibrium is roughly the common knowledge of equilibrium play. Proposition 4

characterizes this gap more. The restriction that agents share a common belief about

others’ strategies “binds” in a particular way: agents internalize that others in their

cells must share the same beliefs about the distribution of play and understand that

agents in preceding cells are part of their own groups that establish they must be work-

ing, but they can hold any beliefs about how agents in succeeding cells play.

The proofs of Propositions 3 and 4 rely on similar observations, so I discuss the high

level ideas of Proposition 4 only. First, I show that for any bonus profile b that virtually

uniquely implements in CE, I can construct an ordered partition P and α ≫ 0 such that

(bi)i∈Ik is feasible for VP,k(α) for each cell Ik in the partition. I do this by considering a

sequence of bonuses {bn} that converges to b from above so that bni ≥ bi for each i and

for all n. Each bn uniquely implements in correlated equilibrium and so has associated

αn multipliers such that (bn, αn) satisfy 2 and 1.

It is possible that many coordinates of the αn multipliers converge to 0 as n converges

7See Pearce (1984).
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to ∞, but these coordinates could be doing so at different speeds. The different rates

of convergence produce the ordered cells of the partition with agents in higher indexed

cells corresponding to coordinates of the multipliers that converge to 0 quicker. As

bn approaches b, agents in cells with higher indexes contribute less and less to the

aggregate incentive constraints that contain agents in cells with low indexes until their

gain from deviating disappears from the constraints. This implies the satisfaction of

the cell problem constraints 4 and establishes that:

inf
P,α≫0

∑
k

VP,k(α) ≤ UCE

Next, I show that given an arbitrary partition P and α ≫ 0, the solutions to the

induced cell problems produce a bonus profile b that virtually uniquely implements in

CE. To show this, I consider a perturbation of b where every agent’s bonus is increased

by a positive ε. It is possible to construct α̂ so that the perturbed b and α̂ satisfy 1 and

2. The idea is simple: since increasing each agent’s bonus by ε allows 4 to be satisfied

strictly, I can go from the cell problem constraints to the aggregated IC constraints 2

by keeping α̂i for i in higher indexed cells sufficiently small relative to α̂j for j in lower

indexed cells. This shows that

inf
P,α≫0

∑
k

VP,k(α) = UCE

Finally, it is possible to show that UCE is actually achieved by a bonus profile that

virtually uniquely implements in correlated equilibrium, so I can get Proposition 4. The

full details of the proofs of Proposition 3 and 4 are in the appendix.

Using Propositions 3 and 4, UCE and URS do not coincide if there is a partition /∈ O
and α ≫ 0 cheaper than any partition in O. Let’s consider when this can happen.

To ensure that working is the unique rationalizable action, the principal must pay

agents enough so that they prefer working to shirking even at their worst case conjec-

ture about who else is working. The principal can be clever and build this assurance

by “dividing-and-conquering.” Rather than paying all agents a lot to ensure they find

working optimal, she can pay a select few a lot. The common knowledge of rationality

and payoffs will allow agents that are not paid as much to reason that those who are

must be working. This shrinks the space of conjectures about others’ actions that these

workers can entertain, so even though these workers are not paid as much, they will

still find working optimal.

In contrast, when seeking to implement in a correlated equilibrium, the principal can
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utilize agents’ common belief about equilibrium play to avoid paying out bonuses tai-

lored to individuals’ worst case conjectures because these conjectures might involve

recommendations that agents would not find obedient. The following result expands

on this idea and presents a sufficient condition for there to be a gap between UCE and

URS:

Proposition 5. Let bR be the bonus profile that virtually implements in unique RS

and has cost URS. Let bR have associated partition P ∈ O and let agents be indexed

according to the order on cells in the partition so that k ∈ Ik. Let J
k denote the worker

set J s.t. 1, ..., k − 1 ∈ J and (P (Jk ∪ k)− P (Jk))bRk − ck = 0.

Given generic P , if P (Jk ∪ k + 1) − P (Jk) > P (Jk+1 ∪ k + 1) − P (Jk+1) for some k,

then UCE < URS.

Proposition 5 fixes the cost-minimizing order in which agents eliminate shirking as ra-

tionalizable. The sufficient condition requires k + 1 to be more productive when Jk

is working than when Jk+1 is, so k and k + 1 disagree regarding which workers sets

they are more productive with. k has a relatively low marginal contribution to success

when Jk is working, but k + 1 is relatively productive at Jk. The principal imple-

menting in rationalizable strategies must convince k to work even if he hypothesizes

Jk works, but the principal implementing in CE can deal with k hypothesizing Jk

works by utilizing k and k+1’s shared belief about play to demonstrate that Jk cannot

occur in equilibrium because k+1 is paid enough to ensure he would join in on working.

The proof proceeds by using the results of Propositions 3 and 4. Given that bR is as-

sociated with the partition P , I consider an alternative partition P̂ where all cells are

the same as in P except the kth and the k + 1-th cell have been merged. Then, I fix

the bonus profile bR. It is possible to produce new limit multipliers α̂ so that under α̂k

and α̂k+1, the old bonuses (bRk , b
R
k+1) satisfy the 4 for Îk strictly. Agent k’s bonus is set

to motivate k to work if just Jk are working, but by including k + 1 in the same cell,

k’s bonus can be lowered since k + 1’s bonus already contributes significantly to the

aggregated incentive terms 4.

I conclude this section by revisiting a motivating example to apply Proposition 5.

Example 2 Revisited.

I can demonstrate that the gap between UCE and URS exists by applying Proposition
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5. Bonus profile bR corresponds to partition

P = {I1 = {2}, I2 = {1}, I3 = {3}}

The key worker set that determines 2’s bonus is J1 = ∅. Given that 2 must be working,

the key worker set that determines 1’s bonus is J2 = {2, 3}, and the analogous set for

3’s bonus is J3 = {1, 2}. Note that P (1)− P (∅) > P (1, 2, 3)− P (2, 3) so the condition

in the proposition is satisfied. In fact, a partition that puts all agents in one cell with

α = (0.15, 1, 0.15) will verify bonus profile (2, 2.1, 2) as virtually implementing in UCE.

7 Conclusion

This paper studies unique implementation in the team production game while relaxing

the supermodularity assumption used in the literature before. Without supermodu-

larity, there are important distinctions between different solution concepts. The main

results in this paper explore the assumptions on the production technology that pro-

duce gaps or no gaps between the costs of uniquely implementing in Nash equilibrium,

in correlated equilibrium, and in rationalizable strategies.

30



References

Becker, Gary S. “A theory of marriage: Part I”. Journal of Political economy 81, no. 4

(1973): 813–846.

Halac, Marina, Ilan Kremer, and Eyal Winter. “Raising capital from heterogeneous

investors”. American Economic Review 110, no. 3 (2020): 889–921.

Halac, Marina, Elliot Lipnowski, and Daniel Rappoport. “Addressing strategic uncer-

tainty with incentives and information”. In AEA Papers and Proceedings, 112:431–

437. American Economic Association 2014 Broadway, Suite 305, Nashville, TN

37203, 2022.

— . “Rank uncertainty in organizations”. American Economic Review 111, no. 3 (2021):

757–786.

Inostroza, Nicolas, and Alessandro Pavan. “Adversarial coordination and public infor-

mation design”. Available at SSRN 4531654 (2023).

Milgrom, Paul, and John Roberts. “Rationalizability, learning, and equilibrium in games

with strategic complementarities”. Econometrica: Journal of the Econometric Soci-

ety (1990): 1255–1277.

Moriya, Fumitoshi, and Takuro Yamashita. “Asymmetric-information allocation to

avoid coordination failure”. Journal of Economics & Management Strategy 29, no.

1 (2020): 173–186.

Morris, Stephen, Daisuke Oyama, and Satoru Takahashi. “Implementation via Infor-

mation Design in Binary-Action Supermodular Games”. Econometrica 92, no. 3

(2024): 775–813.

Myerson, Roger B. “Dual reduction and elementary games”. Games and Economic

Behavior 21, numbers 1-2 (1997): 183–202.

Neyman, Abraham. “Correlated equilibrium and potential games”. International Jour-

nal of Game Theory 26, no. 2 (1997): 223–227.

Pearce, David G. “Rationalizable strategic behavior and the problem of perfection”.

Econometrica: Journal of the Econometric Society (1984): 1029–1050.

Sakovics, Jozsef, and Jakub Steiner. “Who matters in coordination problems?” Amer-

ican Economic Review 102, no. 7 (2012): 3439–3461.

Segal, Ilya. “Contracting with externalities”. The Quarterly Journal of Economics 114,

no. 2 (1999): 337–388.

— . “Coordination and discrimination in contracting with externalities: Divide and

conquer?” Journal of Economic Theory 113, no. 2 (2003): 147–181.

31



Tucker, Albert W. “1. Dual Systems of Homogeneous Linear Relations”. Linear In-

equalities and Related Systems.(AM-38) (1957): 1–18.

Ui, Takashi. “Correlated equilibrium and concave games”. International Journal of

Game Theory 37 (2008): 1–13.

Viossat, Yannick. “Is having a unique equilibrium robust?” Journal of Mathematical

Economics 44, no. 11 (2008): 1152–1160.

Winter, Eyal. “Incentives and discrimination”. American Economic Review 94, no. 3

(2004): 764–773.

32



A Omitted Proofs for Section 5

A.1 Proof of Proposition 4

To show Proposition 4, we first show that any b that virtually implements in unique

correlated equilibrium has an associated ordered partition and α ≫ 0 such that (bi)i∈Ik
is feasible for each Ik cell problem so

inf
P,α≫0

∑
k

VP,k(α) ≤ UCE

Then, we show that given a partition P and α ≫ 0, every bonus b such that (bi)i∈Ik
solves the Ik cell problem virtually implements in unique correlated equilibrium. From

this, we can conclude that there cannot be a strict gap between the LHS and the RHS of

the above inequality since this would imply the existence of a bonus profile arbitrarily

close in cost to the LHS but strictly below the RHS. We now know that

inf
P,α≫0

∑
k

VP,k(α) = UCE

The last step of the proof is to demonstrate that there is a bonus profile that virtually

implements in unique correlated equilibrium (and so is weakly above the LHS in cost)

that attains the cost of UCE. The infimum on the LHS is actually attained by some

partition and α ≫ 0.

Lemma 4. Given that b virtually implements in UCE, ∃ a partition of agents P =

{I1, ..., IK} with ordered cells and (αi) ≫ 0 where (bi)i∈Ik satisfies

∑
i∈Ik−J

αi

(
(P (J ∪ i)− P (J))bi − ci

)
≥ 0 ∀J ⊊ N,∪k−1

l=1 Il ⊆ J (5)

Proof. Fix a sequence of {εn}n where εn > 0 for all n and εn → 0. Since b virtually

implements in UCE, b + εn implements in UCE for each n. Thus, each b + εn can

be associated with some αn ≥ 0 multipliers so that (αn, b + εn) satisfy 2. Recall that

{αn}n are such that αn
i ∈ [0, 1] for each i. Note also that we can without loss normalize

maxi α
n
i to be 1; the strict 2 constraints guarantee that fixing n, not all αn

i can be 0.

The {αn}n form a bounded sequence and so they have a convergent subsequence {αnp}p
with limit point α1. maxi αi is a continuous function of α, so maxi α

1
i = 1. We have

that α1 must contain some coordinates that are strictly greater than 0. Let I1 be the
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set of all i such that α1
i > 0. For J ⊊ I where I1 ∩

(
I − J) ̸= ∅, we have that

∑
i∈I1−J

α1
i

(
(P (J ∪ i)− P (J))bi − ci

)
≥ 0

For J where I1 ⊂ J , when we take the limit of 2 as αnp → α1, we see that the LHS of

2 converges to 0.

Now, suppose we have defined I1, ..., Ik−1 and αi ≫ 0 for i ∈ ∪k−1
l=1 Ik−1. We can create

a truncation of each αn, α̂n = (αn
i )i ̸∈∪k−1

l Il
. Consider J ⊊ I s.t. ∪k−1

l=1 Il ⊂ J . From 2,

we know the following holds for all such J

∑
i/∈J

αi

(
(P (J ∪ i)− P (J))bi − ci

)
> 0

We do the same trick as before, normalizing maxi α̂
n
i to be 1, which does not affect

satisfaction of the above J inequalities. Then, we can once again study a convergent

subsequence of {α̂n}, denoting its limit point αk. αk is guaranteed to have a non-zero

coordinate since maxi α̂
n
i = 1 for all n, so maxi α

k
i = 1. For J ⊊ I s.t. ∪k−1

l=1 Il ⊊ J ,

∑
i∈Ik−J

αk
i

(
(P (J ∪ i)− P (J))bi − ci

)
≥ 0

By iterating this process, we produce all cells of the partition and inequalities in the

statement of the lemma.

Lemma 5. Fix a partition P with ordered cells {I1, ..., IK} and α ≫ 0. Let b denote the

bonus profile where (bi)i∈Ik solves the Ik cell problem. b virtually implements in unique

correlated equilibrium.

Proof. To see this, consider an upward perturbation of b, b̂, where for all agents, b̂i =

bi + ε for some ε > 0. The constraints of each cell level subproblem hold strictly at b̂

given the choice of α. To verify that b̂ implements in UCE, we need to produce some

α̂ ≥ 0 multipliers so that α̂ and b̂ satisfy 2. To construct α̂, we start by setting

α̂i = αi ∀i ∈ I1

At b̂, 4 hold strictly for I1. Next, we proceed recursively. Suppose we have set α̂i for
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all i ∈ ∪k−1
l=1 Il so that modified J constraints hold strictly:

∑
i∈∪k−1

l=1 Il−J

α̂i

(
(P (J ∪ i)− P (J))b̂i − ci

)
> 0 ∀J ⊊ I s.t. ∪k−1

l=1 Il ̸⊂ J

Now, it is possible to choose rk ∈ (0, 1] such that ∀J ⊊ I s.t. ∪k−1
l=1 Il ̸⊂ J ,

∑
i∈∪k−1

l=1 Il−J

α̂i

(
(P (J ∪ i)− P (J))b̂i − ci

)
+ rk

∑
i∈Ik−J

αi

(
(P (J ∪ i)− P (J))b̂i − ci

)
> 0

since there are a finite number of J ⊊ I s.t. ∪k−1
l=1 Il ̸⊂ J . Additionally, for J ⊊ I s.t.

∪k−1
l=1 Il ̸⊂ J , we have that

rk
∑

i∈Ik−J

αi

(
(P (J ∪ i)− P (J))b̂i − ci

)
> 0

since b̂i > bi for all i ∈ Ik and rk > 0. Set α̂i = rkαi for i ∈ Ik. This iterative

construction of α̂ enables us to satisfy all 2 constraints given b̂.

Finally, observe that there exists a sequence of bonus profiles {bn}n such that bn imple-

ments in UCE for all n and
∑

i b
n
i converges to UCE. Without loss, this sequence {bn} is

bounded. It has a convergent subsequence, denoted {bnp}p. Let b̄ be the limit point of

this subsequence. {
∑

i b
np

i }p is a subsequence of the original cost sequence {
∑

i b
n
i }, so

it must converge to UCE as well.
∑

i bi is a continuous function of b, so
∑

i b̄i = UCE.

Because b̄ is the limit of bonuses that implement in UCE, b̄ virtually implements in

UCE. To see why this is, consider any ε > 0 and define a set of bonuses weakly below

b̄+ ε

Bε := {b|bi ≤ b̄i + ε∀i}

If there exists a b ∈ Bε such that we can produce α ≥ 0 so that 1 and 2 are satisfied,

then we can conclude that b̄ + ε also implements in UCE since b̄ + ε differs from b by

a weakly positive vector δ ≥ 0. So, using the same α that verify b as implementing in

UCE, we can conclude that b+ ε also implements in UCE since every payoff difference

term is weakly greater at b̄+ ε compared to b. Since {bnp

i }p converges to b̄ and b̄ ∈ Bε,

we are guaranteed the existence of such a b.

Now, b̄ virtually implements in UCE and has cost exactly UCE. Using lemma 4, we
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know that

inf
P,α≫0

∑
k

VP,k(α) ≤
∑
i

b̄i

So the inequality holds at equality and the infimum can be replaced by min.

A.2 Proof of Proposition 3

The same observations that drive the proof of Proposition 4 help us here. First, any

b that virtually implements in unique rationalizable strategies can be mapped to a

partition P ∈ O:

N∑
k=1

VP,k(α) ≤
∑
i

bi

where α can be taken without loss to be (1, ..., 1) since each cell of P is a singleton.

This gives us that

min
P∈O,α=1

N∑
k=1

VP,k(α) ≤ URS

Next, any P ∈ O induces cell problems and associated bonuses b that virtually imple-

ment in unique rationalizable strategies, so the above inequality is an equality.

Now, let’s show the intermediate claims to complete the proof. First, suppose b virtu-

ally implements in unique rationalizable strategies. We can take a sequence of {εn}n
such that εn > 0 and εn → 0. Consider the sequence of bonuses {b+ εn}n where εn > 0

for all n and εn → 0. Each bonus in this sequence implements in unique rationalizable

strategies and so is associated with an order over agents in which they eliminate not

working as rationalizable. This order can equivalently be represented as an ordered

partition Pn ∈ O. It is without loss to set αn
i = 1 for all i and for all n in the sequence

since the value of VP,k(α) does not depend on α if Ik ∈ P is a singleton. There are

a finite number of ordered partitions possible, so along the sequence, some partition,

call it P , must occur infinitely often. We can then choose a subsequence of {b + εn}n,
selecting only the elements of the sequence that have associated partition P . This sub-

sequence converges to b, so we have that 5 holds for b, α = 1, and partition P ∈ O.

Next, fix P ∈ O. Index agents so that k ∈ Ik for each k = 1, ..., N . Let bonus profile

b be such that bk solves VP,k(1) for each k. Consider a small perturbation of b, b + ε

for ε > 0. Given bonus b1 + ε, all the 4 inequalities for the I1 cell are satisfied strictly,
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so 1 finds working a strictly dominant action. Suppose 1, ..., k− 1 find working strictly

dominant. Given bonus bk + ε, the k cell inequalities are satisfied strictly, so k finds

working strictly dominant. We conclude that given bonuses b + ε, each agent has a

unique rationalizable action, working. b virtually implements in unique rationalizable

strategies.

A.3 Proof of Proposition 5

Proof. To show the statement, we consider bR and demonstrate that for an ordered

partition that is not all singleton cells and some α ≫ 0,
∑

k VP,k(α) <
∑

i b
R
i .

Proposition 3 tells us that bR has associated partition P ∈ O. Index agents according

to the order of their cell, so 1 is the agent in cell I1. We consider a minimal change to

the partition P and study P̃ := {Ĩl}N−1
l=1 where

Ĩl =


Il if l < k

Ik ∪ Ik+1 if l = k

Il+1 if l > k

P̃ merges the k and k+1th cells of the original partition P . We will consider a particular

alternate α to pair P̃ with as well. We restrict (without loss) α̃i = 1 for all i ̸= k + 1.

We will demonstrate that there is α̃k+1 > 0 such that

N−1∑
l

VP̃,l(α̃) <
N∑
l

VP,l (6)

Note that given our restrictions on the cells of P̃ ,

VP̃,l(α̃) = VP,l(α) ∀l < k

VP̃,l(α̃) = VP,l+1(α) ∀l > k

so the only remaining question is how VP̃,k(α̃) compares to VP,k(α) + VP,k+1(α).

To get that 6 holds, we’ll show that we can produce α̃k+1 so that at bk = bRk and

bk+1 = bRk+1, all constraints in the VP̃,k problem hold at > 0 for constraints where bk

appears. bk can be lowered strictly and the resulting bonus would still be feasible at α̃k

and α̃k+1. 6 would hold then.

Let’s think about the relationship between VP,k(α), VP,k+1(α), and VP̃,k(α̃) at bk = bRk
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and bk+1 = bRk+1. The original VP,k(α) problem has these constraints:

(P (J ∪ k)− P (J))bRk − ck ≥ 0 ∀J ⊊ N, {1, ..., k − 1} ⊆ J, k /∈ J

where I have imposed that αk = 1. As long as P is generic, only the Jk constraint was

binding; all other J constraints held > 0. Similarly, the original VP,k+1(α) problem has

constraints

(P (J ∪ k + 1)− P (J))bRk+1 − ck+1 ≥ 0 ∀J ⊊ N, {1, ..., k} ⊆ J, k + 1 /∈ J

and the genericity of P implies that only the Jk+1 is binding. Other constraints are

slack.

Let’s compare to the new problem VP̃,k. The {k, k + 1} problem has constraints for J

s.t.

α̃k

(
(P (J ∪ k)− P (J))bRk − ck

)
≥ 0 ∀J ⊊ N, {1, ..., k − 1, k + 1} ⊆ J

α̃k

(
(P (J ∪ k)− P (J))bRk − ck

)
+ α̃k+1

(
(P (J ∪ k + 1)− P (J))bRk+1 − ck+1

)
≥ 0 ∀J ⊊ N, {1, ..., k − 1, k} ⊆ J, k, k + 1 /∈ J

α̃k+1

(
(P (J ∪ k + 1)− P (J))bRk+1 − ck+1

)
≥ 0 ∀J ⊊ N, {1, ..., k} ⊆ J

The first set of constraints look exactly like their counterparts in the VP,k(α). Similarly,

the third set of constraints look like their counterparts in the VP,k+1(α) problem. The

second set of constraints resemble constraints in the VP,k(α) but now have additional

terms. Recall that by hypothesis Jk is in the second set of constraints.

At bR, every J constraint in the first set of constraints holds > 0. Every J constraint

̸= Jk in the second set holds strictly > 0 in the original k problem, so it is possible to

choose α̃k+1 to small but strictly positive to ensure that every constraint ̸= Jk in the

second set still holds strictly > 0. For Jk, the hypothesis of the proposition guarantees

that k+1’s term in the new Jk constraint is strictly positive, so with small but strictly

positive α̃k+1, we have that the new Jk constraint holds strictly > 0. This is as we

desired. We conclude that 6 holds.
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